Scientists have found the following food web in the cold Antarctic Ocean.

(a) Humans are removing large numbers of the cod.

Some scientists argue that this could lead to a decrease in the numbers of squid and penguins.

Others argue that the numbers of squid and penguins will stay the same.
Carefully explain each argument.

Why they might decrease.
\qquad
\qquad
\qquad

Why they might stay the same.
\qquad
\qquad
\qquad
(b) The following information is about the biomass of the organisms in one of the food chains in the web.

Draw and label a pyramid of biomass for this chain.
(c) Explain, as fully as you can, why the conversion of shrimp biomass into cod biomass is more efficient than that of cod biomass into seal biomass in the cold Antarctic Ocean.
\qquad
\qquad
\qquad
\qquad
(d) Boats from many countries fish the Antarctic Ocean. The cod are being overfished. If the numbers of cod are to increase, the population must be carefully managed.
(i) Suggest two control measures which would prevent a further drop in numbers,
\qquad
\qquad
(ii) Suggest why one of your control measures would be difficult to put into practice.
\qquad
\qquad

2 The diagram below shows a food web for some of the organisms which live in a pond.

(a) (i) Name one secondary consumer in this food web.
\qquad
(ii) The algae are small green plants.

Give three conditions needed by green plants to produce sugars.

1. \qquad
2. \qquad
3. \qquad
(b) This is a pyramid of biomass for the organisms in the aquarium.

Some of the biomass of the producers is not transferred to the tertiary consumers.
Explain, as fully as you can, what happens to this biomass.
(6)
(Total 10 marks)

3 (a) The diagram shows what happens to each 1000 kJ of light energy absorbed by plants growing in a meadow.

Use the information from the diagram to calculate:
(i) how much energy was transferred to herbivores;
\qquad kJ
(ii) the percentage of the energy absorbed during photosynthesis that was eventually transferred to carnivores. Show your working.
\qquad
(b) The table gives the energy output from some agricultural food chains.

FOOD CHAIN	ENERGY AVAILABLE TO HUMANS FROM FOOD CHAIN (kJ PER HECTARE OF CROP)
cereal crop \Rightarrow humans	800000
cereal crop \Rightarrow pigs \Rightarrow humans	90000
cereal crop \Rightarrow cattle \Rightarrow humans	30000

Explain why the food chain cereal crop \Rightarrow humans gives far more energy than the other two food chains.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The amounts of energy available to humans from the food chain cereal crop \Rightarrow pigs \Rightarrow humans can be increased by changing the conditions in which the pigs are kept.

Give two changes in conditions which would increase the amount of energy available. In each case explain why changing the condition would increase the available energy.

Change of condition 1
Explanation \qquad
\qquad
\qquad
Change of condition 2 \qquad
Explanation \qquad
\qquad
\qquad

4 A food chain has four organisms, A, B, C and D.

$$
\mathbf{A} \rightarrow \mathbf{B} \rightarrow \mathbf{C} \rightarrow \mathbf{D}
$$

The table shows the amount of energy transferred by each organism in one year.

Organism	Energy transferred in kJ per year
A	87000
B	14000
C	1600
D	70

Explain, as fully as you can, why organism \mathbf{D} would transfer much less energy than organism \mathbf{A}.
\qquad

5 An oak wood contained the following:
200 oak trees
150000 primary consumers
120000 secondary consumers
(a) Draw and label a pyramid of biomass for this wood. (Your pyramid does not have to be drawn to scale.)
(b) A scientist estimated the total amount of energy flow through each level of the pyramid per year.

The results were:

Energy absorbed by oak trees
Energy in sugar produced by trees
Energy transferred to primary consumers
Energy transferred to secondary consumers 700 kJ per m${ }^{2}$ peryear
(i) Calculate the percentage of the energy absorbed by the trees that is transferred to sugar by photosynthesis. Show your working.

Answer \qquad \%
(ii) Suggest two reasons why a large proportion of the energy is not transferred to sugar.

1. \qquad
\qquad
2. \qquad
\qquad
(iii) Give three reasons why some of the energy in the primary consumers is not passed on to the secondary consumers.
3. \qquad
\qquad
4. \qquad
\qquad
5. \qquad
\qquad

Chickens are kept as farm animals to produce food. Free-range chickens are allowed to feed in a large space outside. The diagram shows how energy supplied in food to a free-range chicken is transferred.

(a) Calculate the amount of energy "lost" in faeces.
\qquad
\qquad
Energy "lost" =___kJ
(b) Some farmers use the battery method. They keep large numbers of chickens in a small indoor space. The food yield from these chickens is higher than that from free-range chickens. Explain why, as fully as you can.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The information in the table compares two farms. Both are the same size, on similar land, close to one another and both are equally well managed.

Name of farm	Activity	Energy value of food for humans produced in one year	Number of people whose energy requirements can be met by this food
Greenbank Farm	Grows food for humans	3285 million kJ	720
Oaktree Farm	Grows food for animals on the farm which become food for humans	365 million kJ	80

(a) Use this information to work out the average daily human energy requirement in kilojoules (kJ) per day.
\qquad
\qquad

$$
\text { Energy requirement }=\ldots \mathrm{kJ} / \mathrm{day}
$$

(b) The figures show that farms like Greenbank Farm can be nine times more efficient at meeting human food energy requirements than farms such as Oaktree Farm.
(i) The food chain for Greenbank Farm is:

$$
\text { vegetation } \rightarrow \text { humans }
$$

What is the food chain for Oaktree Farm?
\qquad
(ii) Explain why Greenbank Farm is much more efficient at meeting human food energy requirements.
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The human population has been increasing rapidly throughout this century. It is now about 6 billion and is still growing. What does the information in this question suggest about likely changes in the human diet which may need to occur during the coming century? Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

8 Compare the efficiency of these two food chains.

$$
\begin{array}{ll}
\text { Food chain } \mathbf{A} & \text { grain } \rightarrow \text { humans } \\
\text { Food chain B } & \text { grain } \rightarrow \text { bullocks } \rightarrow \text { humans }
\end{array}
$$

In your answer, make full use of the following data.

Food	Consumer	Percentage of available energy transferred as useful energy
Grain	Human	9%
Grain	Bullock	12%
Bullock	Human	10%

One kilogram of grain has 80000 kJ of available energy.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 4 marks)

Mark schemes

(a) Decrease: seals will eat more squid and penguins for 1 mark

Stay the same:

- more shrimp/food for squid and penguins
ideas that
- increase in squid and penguins balances the extra eaten by seals
- seals find other prey (allow start to eat shrimps)
any two for one mark each

2
(c) - seals are mammals

- idea that seals have (to maintain) a constant body temperature [allow warm blooded]
- heat losses to cold seas
- more of food eaten used to replace heat loss
(credit use of figures i.e. 95\% loss compared to 90\%
or 5% efficient compared to 10%
or $20: 1$ conversion ratio compared to $10: 1$
with 1 mark)
any three for 1 mark each
(d) (i) ideas that
- reduce number of fishing boats allowed
- breed in captivity and then release
- agree quotas [not an unqualified 'ban']
- avoid breeding areas
- avoid breeding seasons
- increase size of net mesh/don't catch small fish
- limit catches of shrimps
- cull seals
any two for 1 mark each
[allow any other reasonable answer]
(ii) - breeding areas closer to some countries than others
- difficult to police/easy to cheat/'poach'
- difficult to agree quotas
- some countries eat more fish than others
- best weather for fishing maybe in breeding seasons
- fisherman/trawlers need employment
- big demand for cod
any one for 1 mark
[allow any other sensible response]

2 (a) (i) e.g. mussels/caddis loach for 1 mark
(ii) 3 of:
carbon dioxide
water
chlorophyll/chloroplasts
light
any 3 for 1 mark each
(b) 6 of e.g.
some plant/animal material not digested by consumers passes out with faeces respiration releases energy used in movement lost as heat some 'lower' organisms die energy transferred to decomposers/detritivores thence to environment

any 6 for 1 mark each

(ii) 2
gains 2 marks (if answer incorrect, 20 / 1000×100 gains 1 mark)
(b) ideas that
energy lost by animal (pig / cattle) / extra stage / extra trophic level
in waste materials e.g.
in muscular activity / movement
in keeping body temperature higher than surroundings / lost as heat any three for 1 mark each references to respiration regarded as neutral
(c) ideas that
controlling (high) temperature of surroundings / keeping indoors / insulating reduces energy transferred from animal as heat / animal uses body heat to maintain temperature restricting movement (e.g. caging or keeping in darkness)
reduces muscular contraction / muscular activity
each for 1 mark
accept respiration as explanation once only if neither explanation point has received credit
reject give more food / different food
(a) (i) 200 kJ for 1 mark
[10]
any five from:

- the amount of energy (in the biomass of organisms) is reduced at each successive stage in a food chain
- all of prey organism is not consumed
- energy is 'lost' as the organisms' waste materials
- energy is transferred / lost during respiration
- energy is transferred / lost as movement (kinetic energy)
- energy is transferred / lost as heat (thermal energy)
- energy is transferred / lost to the surroundings
- the only energy transferred to a higher level is that which the organisms have used in growing
statements about energy flow the wrong way are neutral
(a) levels in correct order
sizes correct
for 1 mark each
(b) (i) working 0.96% (correct answer $=2$) for 1 mark each
(ii) 2 of e.g.
heat up leaves
absorbed by non-photosynthetic parts transmitted through leaves
any 2 for 1 mark each
(iii) 3 of e.g.
respiration of primary consumers movement of p.c.
waste from p.c.
repair/growth of p.c.; heat losses to surroundings
any 3 for 1 mark each

6 (a) 115
(b) any four from
less energy lost / used
as heat lost to the atmosphere
since warm indoors
accept temperature controlled
(less energy lost) in movement
since movement restricted
more growth / eggs
accept prevents loss of body mass or gets fatter/ weight gain
(a) 12500
incorrect numerical answer but clear evidence of correct working e.g. 365 million $\div 365 \div 80$ or 3285 million $\div 365 \div 720$ credit with (1)
(b) (i) vegetation
\rightarrow (farm) animals \rightarrow humans
accept any correct variation on this theme e.g. grass \rightarrow lambs \rightarrow humans
(ii) any three linked points from

* less links in the food chain or only one link in the food chain
* energy 'wasted' or 'lost' or 'used' at each link
* energy 'wasted' or 'lost' in (the process of) respiration
* energy 'used’ to maintain body temperature
* energy 'used' by the animalsin movement
(c) people will eat more/greater proportion of food from plants
accept people will eat less/smaller proportion of food from animals do not credit 'everyone will stop eating meat'
any three linked points from
these marks are independent of the 'prediction'mark do not credit 'food from plants will become less expensive'
* meat will become more expensive
* only a limited area of land
available on the planet (for food production or otherwise)
* more people means less land available for food production because some used for housing etc.
* land will become more expensive
* land will have to be used more efficiently
or more people will go hungry
or people will (each) eat less
* livestock farmers will try to improve efficiency
* (leading to) growth of 'factory farming'
* demand for food will rise (total)

8 (food chain) A gives 7200 kJ
(of useful energy)
or 7.2 MJ
or 7200000 J
unit essential ineach case
(food chain) B gives 960kJ (of useful energy)
or 0.96 MJ
or 960000 J
unit essential in each case
credit 1 mark if both are numerically
correct but unit omitted
same comparison made in each case
e.g. for each kilogram of grain
or refers to more stages in food chain
results in less efficiency
(so) (food chain) A is 7.5 times more efficient than (food chain) B
or for every unit of useful energy given
to a person by B, A gives $7 \frac{1}{2}$ units
or food chain B is only 13(.3)\% as
efficient as food chain A
or makes a correct comparison
inpercentage terms

