Humans keep their internal conditions almost constant.

Body temperature is kept within a narrow range.

1

When the core body temperature is too low, this is detected by the thermoregulatory centre in the brain.

Describe how the body responds when a decrease in core body temperature is detected.

(Total 6 marks)

2 Urine consists of water, ions and other substances such as urea. Urine is formed in the kidney by filtering the blood. The diameter of the pores in the filter is about 6 nanometres.

The table shows the diameters of the molecules of some of the substances in the blood.

Substance	Diameter of molecule in nanometres
А	10 to 20
В	1
С	0.6
D	0.5
E	0.2

Use information from the table and your own knowledge to answer the questions.

- (a) (i) Which substance, **A**, **B**, **C**, **D** or **E**, is protein?
 - (ii) Protein is **not** found in the urine of a healthy person.

Explain why.

(1)

(b)	Substance B is not found in the urine of a healthy person.
	Suggest an explanation for this.

(2)

(c) Haemolytic anaemia is a disease in which some of the red blood cells burst open.

Small amounts of haemoglobin may be found in the urine of a person suffering from haemolytic anaemia.

The diameter of a haemoglobin molecule is 5.5 nanometres.

Haemoglobin is **not** found in the urine of a healthy person, but haemoglobin can be found in the urine of a person with haemolytic anaemia.

Explain why.

(3) (Total 8 marks)

(1)

(b) In a healthy person, insulin prevents high levels of glucose in the blood. To make insulin, cells in the pancreas need amino acids.

Amino acids cannot be stored in the body.

Describe, as fully as you can, what happens to amino acids that cannot be stored in the body.

4 The graph shows the core body temperature and the skin surface temperature of a cyclist before, during and after a race.

(i)	When the cyclist finished the race, his core body temperature started to decrease.
	How long did the race last?
(11)	
(11)	skin surface temperature between 09.15 and 10.15.
(iii)	After 10.30, the core body temperature decreased.
	Explain how changes in the blood vessels supplying the skin caused the skin surface

temperature to increase.

(b) During the race, the cyclist's blood glucose concentration began to decrease.

Describe how the body responds when the blood glucose concentration begins to decrease.

(3) (Total 12 marks) **5** Many runners drink sports drinks to improve their performance in races.

A group of students investigated the effects of three brands of sports drink, **A**, **B** and **C**, on the performance of three runners on a running machine. One of the runners is shown in the image below.

© Keith Brofsky/Photodisc/Thinkstock

 Table 1 gives information for each drink.

Table 1	l
---------	---

	Brand of sports drink		
Nutrient per dm ³	Α	В	С
Glucose in g	63	31	72
Fat in g	9	0	2
lons in mg	312	332	495

(a) (i) In the investigation, performance was measured as the time taken to reach the point of exhaustion.

Exhaustion is when the runners could not run anymore.

All three runners:

- ran on a running machine until the point of exhaustion
- each drank 500 cm ³ of a different brand of sports drink
- rested for 4 hours to recover
- ran on the running machine again and recorded how much time they ran until the point of exhaustion.

The speed at which the runners ran was the same and all other variables were controlled.

The students predicted that the runner drinking brand **B** would run for the shortest time on the second run before reaching the point of exhaustion.

Use information from **Table 1** to suggest an explanation for the students' prediction.

(ii) If the balance between ions and water in a runner's body is not correct, the runner's body cells will be affected.

Describe **one** possible effect on the cells if the balance between ions and water is **not** correct.

(b) When running, a runner's body temperature increases.

Describe how the brain monitors body temperature.

(c) (i) **Table 2** is repeated here to help you answer this question.

Table 2

	Bran	d of sports	drink
Nutrient per dm ³	Α	В	С
Glucose in g	63	31	72
Fat in g	9	0	2
lons in mg	312	332	495

(3)

People with diabetes need to be careful about drinking too much sports drink.

Use information from **Table 2** to explain why drinking too much sports drink could make people with diabetes ill.

(3) Other than paying attention to diet, how do people with diabetes control their (ii) diabetes? (1) (Total 10 marks) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Homeostasis keeps conditions in the body relatively constant.

The amount of water in the body is controlled by homeostasis.

Kidney function is controlled by a gland in the brain.

Describe how the water content of the blood is controlled.				
	-			
	_			
	-			
	-			
	-			
	_			
	_			
	_			
	_			
	_			
	-			
	_			
	-			
	-			
	-			

(Total 6 marks)

7 It is important to remove waste products from our bodies.

Healthy kidneys help to keep our internal environment constant.

(a) Describe how a healthy kidney produces urine.

(b) A child has kidney failure and is treated with dialysis.

Before the dialysis starts, the doctor measures the concentration of urea and glucose in the child's blood.

The table shows the results.

	Concentration in the blood before dialysis starts in mmol per dm ³
Urea	28
Glucose	6

The child has a normal blood glucose concentration.

(i) Sketch a graph on **Figure 1** to suggest what will happen to the concentration of urea in the blood during dialysis.

(ii) Sketch a graph on **Figure 2** to suggest what will happen to the concentration of glucose in the blood during dialysis.

Figure 2

(1)

(1)

(c)	(i)	Another way of treating kidney failure is with a kidney transplant.	
		A transplanted kidney can be rejected.	
		Explain why the new kidney may be rejected.	
			_
			_
			_
			(3)
	(ii)	Describe one way in which doctors try to prevent kidney rejection.	

(1) (Total 11 marks)

Mark schemes

1	bloo	d ves	sels sı	upplying skin	1	
	cons	strict				
				allow vasoconstriction		
				do not allow capillaries /veins constricting		
				do not allow moving blood vessel		
					1	
	less	blood	flow ((to / through capillaries / to skin)		
				allow blood flows further away from skin surface		
					1	
	so le	ess en	nergy is	s lost (to the surroundings)		
				allow less heat is lost		
					1	
	'shive	ering' l	by <u>mu</u>	uscle (contraction)		
				allow <u>muscles</u> contract (and relax) rapidly		
					1	
	relea	asing	energ	y or respiring (more)		
				allow 'heat produced'		
				do not allow energy produced / made		
				do not allow energy for respiration		
				allow sweating stops / reduces		
				ignore hair erection		
					1	
					[6]
2	(a)	(i)	Α			
2					1	
		(ii)	(pro	tein) molecule is large		
				ignore letters		
					1	
			canr	not pass through filter		
				(protein is) too big to get through the filter = 2 marks		
					1	
	(b)	B is	taken	back into the blood or		
	()	B is	reabs	sorbed		
					1	
		reat	osorbe	ed completely		
		or re	eabso	rbed after filtration	1	
					*	

RBC is too big to pass through filter (C) 1 Haemoglobin is inside red blood cells or haemoglobin released when RBC bursts 1 Haemoglobin is small enough to pass through filter or haemoglobin diameter < pore diameter 1 [8] (a) Pancreas 3 allow phonetic spelling 1 (b) any three from: max 2 if any one process goes on in wrong organ (amino acids) broken down ٠ (amino acids) form urea • (amino acids broken down / converted or urea formed) in liver (urea / broken down amino acids) removed / filtered by kidney • do not allow amino acids filtered / removed by kidney (urine / urea / broken down amino acids) stored / held in bladder ٠ do not allow amino acids stored / held in bladder 3 [4] 1 hour 15 mins / 1.25 hours / 75 mins (a) (i) 4 allow 1:15 ignore 1.15 hours

	(ii)	increase in (core / body) temperature	
		Ignore numbers	1
		(due to an) increase in <u>respiration</u> or more <u>muscle</u> contraction	1
		releasing energy (as a waste product)	
		do not allow making energy	
		skin temperature decreases	1
			1
		(because there is) sweating	1
		(which) evaporates and cools the skin	
		ignore references to vasodilation or vasoconstriction	1
	(iii)	(there is) dilation of vessels (supplying skin capillaries)	
		allow blood vessels widen	
		ignore expand	
		do not accept dilating capillaries or moving vessels	1
		(so) more blood flows (near skin) (surface) or blood is closer (to the skin) <i>ignore ref to heat</i>	
			1
(c)	pan	creas detects (low) blood glucose	1
	proc	duces glucagon	
		do not allow glucagon made in the liver	1
	(so)	glycogen is converted to glucose	
		allow adrenaline released which increases conversion of glycogen to glucose	
		or	
		converted to glycogen	
		for 1 mark	1

[12]

- (a) (i) has the least amount of glucose allow least amount of fat **or** no fat
 - (to) transfer energy (for the run)
 allow (to) release energy (for the run)
 do not allow produces energy
 do not allow '<u>energy for</u> respiration'
 - (ii) any **one** from:
 - cells will work inefficiently
 - absorb too much water / swell / overhydrate
 - lose too much water / shrink / dehydrate ignore turgid / flaccid cells burst is insufficient allow cramp in muscle.
- (b) any three from:
 - thermoregulatory centre
 - (has temperature) receptors
 - (which) monitor blood temperature (as it flows through the brain)
 - (temperature) receptors in the skin
 - (receptors) send impulses to the brain

ignore vasoconstriction / vasodilation / sweating allow hypothalamus

impulses sent to the thermoregulatory centre = 2 marks.

1

1

1

(a person with diabetes) does not produce insulin **or** does not produce enough insulin

allow (person with diabetes) has cells which do not respond to insulin

do not allow insulin produced by liver

so blood glucose / sugar levels will rise too high or to a dangerous level

(ii) inject insulin

or

have an insulin pump (fitted)

do **not** allow swallow insulin accept exercise accept inhale insulin accept take metformin **or** other correctly named drug allow pancreatic transplant

1

1

1

6

Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response. Examiners should also refer to the information on page 5, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1 – 2 marks)

There is a brief description of kidney function including a mention of pituitary gland **or** hormones but roles may be confused.

Level 2 (3 – 4 marks)

There is a clear description of kidney function in relation to fluctuations in blood water levels and the roles of the pituitary gland **or** hormone is mentioned with correct role.

Level 3 (5 – 6 marks)

There is a clear and detailed scientific description of kidney function in relation to fluctuations in blood water levels and of the roles of the pituitary gland and ADH.

examples of biology points made in the response:

- if water content too low, ADH released
- from pituitary gland
- into the blood
- (causing) kidney reabsorbs more water
- more concentrated / small volume urine produced
- if water content too high, ADH lowered / not produced
- less water reabsorbed by kidney
- more dilute / larger volume urine produced
 - full marks may be awarded for detailed description of <u>either</u> water loss or gain
- 7 (a) (the kidney) filters the blood ignore refs to hormones and drugs

(and then) reabsorbs <u>all</u> of the glucose

reabsorbs some of the ions allow salts ignore minerals

reabsorbs some of the water

releases urea (in urine)

[6]

1

1

1

1

(b)	(i)	should fall from 28 (to the end of dialysis) ignore any line drawn after end of dialysis allow + / - 0.5 square graph line must fall to / below below 15	1
	(ii)	should stay level at about 6 throughout ignore slight variations allow + / - 1 square ignore any line drawn after end of dialysis	1
(c)	(i)	immune system allow white blood cells / lymphocytes	1
		(produces) antibodies	1
	(::)	non-matching antigens insufficient	1
	(11)	 tissue typing (to find match) treating with drugs that suppress the immune system accept treat with immunosuppressants. 	1