Photosynthesis takes place the leaves of green plants.
(a) Write a balanced chemical equation for the formation of glucose by photosynthesis.
$\qquad$
(b) Describe two ways that the rate of photosynthesis can be decreased without lowering the temperature.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) Some students decided to investigate the effect of temperature on the rate of photosynthesis in pond weed. They set up the apparatus and altered the temperature using ice and hot water. The counted the number of bubbles given off in a minute at different temperatures. They obtained the following results.


| Results |  |
| :---: | :---: |
| Temperature <br> in ${ }^{\text {C }} \mathbf{C}$ | Number of bubbles <br> per minute |
| 10 | 6 |
| 20 | 15 |
| 30 | 21 |
| 40 | 23 |
| 50 | 19 |

(i) Plot the points on the graph.

Number of bubbles per minute


(ii) Use your graph to predict the number of bubbles per minute at $25^{\circ} \mathrm{C}$.
$\qquad$
(iii) Suggest a reason why the rate of photosynthesis seems to decrease in this pondweed after $40^{\circ} \mathrm{C}$.
$\qquad$
$\qquad$

Person A and Person B measured their pulse rates over a period of five minutes. For one minute of this time they exercised by stepping on and off a box. At other times they sat still. The graph shows the results for Person A.

(i) What does the graph tell you about the changes in the pulse rate of Person $\mathbf{A}$ within the five minute period?
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) What was the pulse rate of Person $\mathbf{A}$ at the end of the five minute period?
(iii) The table shows the results obtained for Person B.

| Time <br> in minutes | Pulse rate per <br> minute |
| :---: | :---: |
| 0 | 68 |
| 1 | 68 |
| 2 | 110 |
| 3 | 96 |
| 4 | 68 |
| 5 |  |

Plot these results on the graph.

3 Regular exercise is important, as it helps to maintain an efficient supply of blood to the muscles, the heart and the lungs. This is helped by an increase in the heart rate during exercise.

Explain why it is necessary for the heart rate to increase during exercise.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(Total 4 marks)

This question is about photosynthesis.
(a) Plants make glucose during photosynthesis. Some of the glucose is changed into insoluble starch.

What happens to this starch?
Tick $(\checkmark)$ one box.

The starch is converted into oxygen.


The starch is stored for later use.


The starch is used to make the leaf green.
(b) A student investigated the effect of temperature on the rate of photosynthesis in pondweed. The diagram shows the way the experiment was set up.

(i) The student needed to control some variables to make the investigation fair. State two of these variables.

1. $\qquad$
2. $\qquad$
(ii) The bubbles of gas are produced only while photosynthesis is taking place.

What two measurements would the student make to calculate the rate of photosynthesis?

1. $\qquad$
2. $\qquad$
(c) The graph shows the effect of temperature on the rate of photosynthesis.

(i) Name the factor that limits the rate of photosynthesis between the points labelled $\mathbf{A}$ and $\mathbf{B}$ on the graph.
$\qquad$
(ii) Suggest which factor, carbon dioxide, oxygen or water, might limit the rate of photosynthesis between the points labelled $\mathbf{C}$ and $\mathbf{D}$ on the graph.
$\qquad$
(Total 7 marks)

The table shows the amounts of energy used in running and in walking at different speeds by people of different body masses.

| Activity | Energy used in kilojoules per hour |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{3 4} \mathbf{~ k g}$ <br> person | $50 \mathbf{k g}$ <br> person | $\mathbf{7 0} \mathbf{~ k g}$ <br> person | $\mathbf{9 0} \mathbf{~ k g}$ <br> person |
| Running, 9 km per hour | 1530 | 1850 | 2770 | 3700 |
| Running, 11 km per hour | 2140 | 2560 | 3860 | 5120 |
| Running, 16 km per hour | 2980 | 3570 | 5380 | 7140 |
| Walking, 3 km per hour | 530 | 670 | 1010 | 1340 |
| Walking, 5 km per hour | 740 | 880 | 1340 | 1760 |
| Walking, 7 km per hour | 1030 | 1240 | 1850 | 2480 |

(a) Describe two patterns you can see in the data.

1. $\qquad$
$\qquad$
2. $\qquad$
$\qquad$
(b) Our breathing rate is much higher when running than when walking.

Explain the advantage of this to the body.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

6 (a) The table shows the effect of exercise on the action of one person's heart.

|  | At rest | During <br> exercise |
| :--- | :---: | :---: |
| Heart rate in beats per minute | 72 | 165 |
| Volume of blood leaving the heart in each beat <br> in $\mathrm{cm}^{3}$ | 75 | 120 |
| Heart output in $\mathrm{cm}^{3}$ perminute | 5400 |  |

(i) Calculate the heart output for this person during exercise.

Show clearly how you work out your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
Answer =
$\qquad$ $\mathrm{cm}^{3}$ perminute
(ii) During exercise, more oxygen is carried to the working muscles.

Explain why this is helpful during exercise.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) Give two other changes in the body that help to increase the amount of oxygen delivered to the working muscles during exercise.

1. $\qquad$
2. $\qquad$
$\qquad$
(a) (i) Complete the word equation for photosynthesis.
carbon dioxide + $\qquad$ (+ light energy) $\rightarrow$ glucose + $\qquad$
(ii) Most of the carbon dioxide that a plant uses during photosynthesis is absorbed from the air.

Give one other source of carbon dioxide for a plant.
Draw a ring around your answer.
the soil respiration in the plant osmosis in the plant water

A student investigated the conditions that plants need for photosynthesis.
The leaves of the plant he used had green and white parts.
Diagram 1 shows how part of one leaf was covered in black (opaque) card.
The plant was placed in a warm, sunny area and was watered well.
Eight hours later the leaf was removed from the plant and was tested for starch.
The results of the test are shown in Diagram 2, the shaded parts show where starch was present.

## Diagram 1



Diagram 2

(b) Name the two independent variables in this investigation.

1. $\qquad$
$\qquad$
2. $\qquad$
$\qquad$
(c) Why was no starch found in:
(i) the part of the leaf labelled $\mathbf{A}$
$\qquad$
$\qquad$
(1)
(ii) the part of the leaf labelled $\mathbf{B}$ ?
$\qquad$
$\qquad$

8 (a) The equation describes the process of photosynthesis. carbon dioxide + $\qquad$ + light energy $\longrightarrow$ glucose + $\qquad$
(i) Write in the names of the two missing substances.
(ii) Name the green substance which absorbs the light energy.
$\qquad$
(b) (i) In bright sunlight, the concentration of carbon dioxide in the air can limit the rate of photosynthesis. Explain what this means.
$\qquad$
$\qquad$
$\qquad$
(ii) Give one environmental factor, other than light intensity and carbon dioxide concentration, which can limit the rate of photosynthesis.

9 A student pedalled an exercise cycle at constant speed for 5 minutes. The student's heart rate was recorded at one-minute intervals during the exercise and also during recovery.

The results are shown in the graph.

(a) Describe, in as much detail as you can, the changes in heart rate between 0 and 14 minutes.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) How do arteries supplying the leg muscles alter the rate of blood flow through them during exercise?
$\qquad$
$\qquad$
(c) Explain how an increase in heart rate helped the student during exercise.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Mark schemes

(a) reactants: $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
products: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}$
1

1
balance:
$6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}$
(b) 1 mark each for any of the following ideas:
lower $\mathrm{CO}_{2}$ concentration
lower light intensity
decrease water availability
alter light wavelength or colour
accept more green light
(c) (i) scales correctly constructed
i.e. equal intervals along each axis
points plotted correctly
appropriate line correctly drawn
accept dot to dot or line of best fit
cancel if line extends through zero or beyond $50^{\circ} \mathrm{C}$
1
(ii) 18-19 (bubbles per minute)
(iii) heat denatures enzymes or destroys membranes or ruptures cells or destroys cells
do not accept kills enzymes
(i) with exercise rate rises;
accept between 1-2 minutes rate rises

1
(when exercise stops) rate falls slowly; accept gentle fall or steady fall
for answers which just describe a rise then a fall allow one mark only as an alternative to the first two points
rate does not return to normal or to starting or to resting rate accept rate returns to normal after five minutes or three minutes of rest or after recording ended
(ii) 86 (per minute);
(iii) plotting points;
deduct one mark for each error to max of two if 68 wrongly plotted count as one error (ignore the quality of the line)

any four from:
more energy / respiration required accept it prevents / reduces anaerobic respiration or less / no lactic acid reference to increase must be made, but only needed once, provided inference is clear for remainder of points. accept 'delivered more quickly' for 'increase'
increase oxygen uptake into blood (in lungs)
increase oxygen delivery to muscles
increase glucose delivery to muscles
increase removal of heat from muscles or increase delivery of heat to skin
increase removal of carbon dioxide from muscles
increase removal of carbon dioxide from blood (in lungs)
(a) the starch is stored for later use.
(b) (i) any two from:
do not accept temperature-apply list principle
ignore reference to time

- carbon dioxide (concentration)
- light intensity
allow one mark for light if neither intensity or colour are awarded
- light colour / wavelength
- pH
- size / amount plant
- same / species / type plant
allow 'the plant'
- amount of water in the tube
ignore amount of water alone
(ii) number / amount of bubbles or amount of gas / oxygen
allow volume of bubbles (together)
ignore the bubbles' unqualified
(relevant reference to) time / named time interval
allow how long it bubbles for
do not accept time bubbles start / stop
ignore speed / rate bubbles
ignore instruments
do not accept other factors eg temperature
accept how many bubbles per minute for 2 marks

1
(c) (i) temperature
allow heat $/{ }^{\circ} \mathrm{C} /$ cold
1
(ii) carbon dioxide $/ \mathrm{CO}_{2}$
$\mathrm{CO} 2 / \mathrm{CO}^{2} / \mathrm{Co}_{2} / \mathrm{Co}^{2} / \mathrm{CO}_{2} / \mathrm{CO}^{2}$
do not accept CO/2CO
1
(a) increased speed
or harder exercise / running
$\rightarrow$ increased need / use / loss of energy
allow further you run / walk the more energy you need
increased mass / bigger $\rightarrow$ increased use of energy
(b) any three from:

- supply / using (more / enough) oxygen
or get (more) oxygen in blood(*)
- remove (more) $\mathrm{CO}_{2}{ }_{2}{ }^{*}$ )
- doing (more) work
or
using (more) energy allow produce energy(*)
(*)need reference to 'more' ONCE only for fullmarks
- for respiration
- prevent build up of lactic acid
or prevent oxygen debt
or prevent anaerobic (respiration)
or allow aerobic (respiration)
(a) (i) 19800
for correct answer ignore working or lack of working $165 \times 120$ but no answer / wrong answer $=1$ mark (ignore extras)
(ii) any two from:
- for respiration ignore oxygen debt
- energy released allow energy produced
- prevents anaerobic respiration
- prevents build-up of lactic acid
(b) any two from:
- increased breathing rate(*)
- increased depth of breathing or deepbreathing(*)
$\left(^{*}\right)$ more breathing is max 1 mark
ignore increase in heart rate
allow heavier breathing
do not allow harder breathing
- dilation of arteries / vasodilation
allow blood vessels dilate
do not allow veins / capillaries dilate
- blood diverted from elsewhere
ignore name of organ
allow hydrogen oxide
oxygen / $\mathrm{O}_{2} / \mathrm{O}$
allow upper and lower case symbols and superscripts
answers must be in this order
(ii) respiration in the plant
allow clear indication of correct response
(b) light (no light) / light intensity
ignore references to the card / covered / uncovered
1
chlorophyll (no chlorophyll) / chloroplast allow leaf colour or both green and white given

1
(c) (i) no light (received) or it's dark
allow no photosynthesis do not allow little light / photosynthesis
ignore sun
apply list principle for other factors
1
(ii) no chlorophyll / chloroplasts (present)
allow no / little photosynthesis allow white or not green or little chlorophyll / few chloroplasts apply list principle for other factors

## 8

(a) (i) L.H.S. - water $/ \mathrm{H}_{2} \mathrm{O}$
R.H.S. - oxygen $/ \mathrm{O}_{2}$
accept $\mathrm{H}^{2} \mathrm{O}$
accept $\mathrm{O}^{2} / \mathrm{O}$
(ii) chlorophyll
must make it clear that it is the chlorophyll do not credit chloroplast on its own do not accept chloroplast / chlorophyll without indication that it is chlorophyll
(b) (i) light intensity / temperature is high enough for higher rate or light / temperature is not limiting
low $\mathrm{CO}_{2}$ available or not enough $\mathrm{CO}_{2}$ available or rate would be higher with more $\mathrm{CO}_{2}$
(ii) temperature
allow water / rain
allow (too) cold / hot as a minimum
allow wave length / frequency / colour
ignore ions
ignore heat

9 (a) any three from:

- rose rapidly (during exercise) / use of approximatefigures
- then more slowly (during exercise)
accept rate (of increase) slows down
- to max 126 / at 5 minutes / end of exercise
- rapid fall (during recovery) or use of approximate numbers
- then less rapid fall / use of approximate numbers
- returned to resting rate ( 60 bpm ) by 11 minutes
(b) arteries dilate / widen
accept muscle in wall relaxes
(c)
any faur from:
- muscles using more energy ar more energy released
- muscles respire faster
- supply more oxygen
- supply more glucose / sugar
- remove more $\mathrm{CO}_{2}$
- remove lactic acid
- remove heat / to cool
do nat accept energy produced
allow for aerobic respiration
ar to prevent anaerobic respiration
'more' needed ONCE only for full marks

