The photograph shows a red blood cell in part of a blood clot. The fibres labelled **X** are produced in the early stages of the clotting process.

(a) Suggest how the fibres labelled **X** help in blood clot formation.

		(1)
(b)	The average diameter of a real red blood cell is 0.008 millimetres. On the photograph, the diameter of the red blood cell is 100 millimetres.	
	Use the formula to calculate the magnification of the photograph.	
	Diameter on photograph = Real diameter × Magnification	
	Magnification =	
		(2)
(C)	Some blood capillaries have an internal diameter of approximately 0.01 millimetres.	
	(i) Use information given in part (b) to explain why only one red blood cell at a time can pass through a capillary.	

	(ii)	Explain the advantages of red blood cells passing through a capillary one a	t a time.
(a)	How	many pairs of chromosomes are there in a body cell of a human baby?	(Total 7 mar
(b)		e the following in order of size, starting with the smallest, by writing	
(D)	num	bers $1 - 4$ in the boxes underneath the words.	
	chro	mosome nucleus gene cell	
()	_		
(C)	For	a baby to grow, its cells must develop in a number of ways.	
	(i)	Cell enlargement	
	(ii)	The process of cell division by mitosis	

(d) Why is cell specialisation (differentiation) important for the development and growth of a healthy baby from a fertilised egg?

(2) (Total 8 marks)

- water from roots (to rest of plant) gas X gas Y
- **3** The diagram shows a plant leaf during photosynthesis.

(a) Name:

- (i) gas **X**; _____
- (ii) gas **Y**._____

(b) Why is sunlight necessary for photosynthesis?

	Explain, as fully as you can, why it is an advantage to the plant to store carbohydrate starch rather than as sugar.	e as
	otaron nan ao oagan	
		_
		_
		_
		(Total 6 ma
Plar	ts need chemical energy for respiration and for active transport.	
(i)	Write a balanced chemical equation which represents the process of respiration in p	lanta
(1)	while a balanced chemical equation which represents the process of respiration in p	iants.
		_
<i></i> .		
(11)	Describe the process of active transport in the root hair cells of plants.	
		_
		_
		_ _ _
		_ _ _ _
		_ _ _ _

What is involved in active transport?

6

(Total 4 marks) A cook prepares a fresh fruit salad by cutting up a variety of fruits and placing them in a bowl with

A cook prepares a fresh fruit salad by cutting up a variety of fruits and placing them in a bowl with layers of sugar in between. After two hours the fruit is surrounded by syrup (concentrated sugar solution).

Explain, as fully as you can, why syrup (concentrated sugar solution) was produced after two hours.

(Total 4 marks)

(a) The diagrams show what happens to the shape of a plant cell placed in distilled water.

7

(ii)

(i) Explain why the cell swells and becomes turgid. Name the process involved.

Give one feature of the cell wall which allows the cell to become turgid.

(1)

(2)

(b) Describe the change which will occur if a piece of peeled potato is placed in a concentrated sugar solution and explain why this change occurs.

(3) (Total 6 marks) The diagram shows how an immature egg could be used either to produce cells to treat some human diseases or to produce a baby.

Scientists may be allowed to use this technique to produce cells to treat some human diseases, but not to produce babies.

Using information from the diagram, suggest an explanation for this.

8

(Total 4 marks)

9 Some students set up an experiment using osmosis to find the concentration of sucrose solution in potato cell sap. They used discs of potato cut to the same size and weighing approximately 10 gms. The discs were put into each of five beakers.

(a) (i) After two hours they reweighed the discs after carefully blotting them first. Why did the students blot the potato before weighing it?

(1)

(ii) Their results are shown in the table below.

	Beaker 1	Beaker 2	Beaker 3	Beaker 4	Beaker 5
Final mass in g	13.0	12.2	9.0	7.9	7.3
Initial mass in g	10.0	10.6	10.0	10.1	10.4

The students calculated the % gain or loss in mass of potato. Complete this table of results for Beakers 2, 4 and 5.

Beaker 1	Beaker 2	Beaker 3	Beaker 4	Beaker 5
13 - 10.0 = 3.0		9.0 - 10.0 =		
3.0 10.0 ×100% = 30%		-1.0 -1.0 10.0 = -10%		
Gain in mass = 30%		Loss in mass = 10%		

(3)

(b) (i) Draw a graph of % Gain or Loss in mass against sucrose concentration.

(Total 10 marks)

10 The table shows the concentrations of some mineral ions in the cells of a pond plant and in the surrounding pond water.

	Concentration in mmol per dm ³		
	Potassium	Calcium	Sulphate
Plant cells	49.0	7.0	7.0
Pond water	0.5	0.7	0.4

(i) The plant cells would not have been able to absorb these mineral ions from the pond water by diffusion. Explain why not.

(ii) Suggest a process which would allow these ions to be absorbed from the pond water by the plant cells.

(1) (Total 3 marks)

(2)

Mark schemes

1	(a)	hold <u>cells</u> together or prevent flow of <u>cells</u> or trap <u>cells</u>	1
	(b)	12500	
		if correct answer, ignore working / lack of working	
		<u>100</u> 0.008 for 1 mark	
		ignore any units	2
	(c)	 size RBC approximately same size capillary or no room for more than one cell or <u>only</u> one can fit or RBC is <u>too</u> big <i>allow use of numbers</i> <i>do not accept capillaries are narrow</i> 	1
		 (ii) more oxygen released (to tissues) or more oxygen taken up (from lungs) 	1
		and any two from:	
		slows flow or more time available	
		shorter distance (for exchange) or close to cells / capillary wall	
		more surface area exposed	2
2	(a)	23	1
	(b)	chromosome nucleus gene cell 2 3 1 4	1
	(c)	(i) any one from	
		(cells which are bigger) take up more space	
		(cells) have to get bigger or mature to divide	
			1

[7]

	(ii)	chromosomes duplicate or		
		make exact copies of self		
		accept forms pairs of chromatids	1	
		accept chromatids or chromosomes separate		
			1	
		identical (daughter) cells formed		
		accept for example, skin cells make		
		more skin cells or cells are clones		
			1	
(d)	anv	two from		
()	,			
	Diffe	erentiation mark		
	diffe	rent functions		
		accept different cells are needed		
		for different organs		
	نرينا	sion or specialisation mark		
Division or specialisation mark as fertilised egg starts to divide each cell specialises to form a part of the				
		accept specialised cells make		
		different parts of the body		
	Cro	with mostly		
	spec	ialised cells undergo mitosis to grow further cells		
	opoo	accept cells divide or reproduce		
		to form identical cells		
			2	
				[8]
(a)	(i)	carbon dioxide / CO_2 (<i>reject</i> CO)		
	(ii)	$\alpha_{\rm XV}$ (water vanour neutral)		
	(")	for 1 mark each		
			2	
(b)	(prov	vides) operav		
(0)	(pro	for one mark		
		ior one mark	1	
(\mathbf{o})	otore	h incoluble therefore water not taken in hy compare		
(C)	or			
	suga	r is soluble / has small molecules may diffuse out therefore lost		
	-	(ignore ref. to cells bursting)		

3

Page 12 of 17

for 1 mark each

3

1

1

[6]

(i) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ energy is neutral

4

formulae all correct with no omissions / deletions

correctly balanced credit 1 mark if the answer is the exact reverse of an incorrect answer for (a)

(ii) and **three** from

take up of (soluble) substances / ions against the concentration gradient or when the concentration (of the substance / ions) is greater inside the cell / cytoplasm than outside it

through the (semi-permeable) (cell) membrane energy from mitochondria or energy from respiration not just energy

any **four** from

5

molecules / ions

do not credit mineral salts

move(d) through / across the cell

wall / membrane

against (a / the) concentration

gradient

by a series of chemical

reactions

(because) diffusion cannot occur

energy (required)

(supplied by) respiration

oxygen required for respiration (to occur)

6 ideas that

sugar has dissolved in moisture (on surface of fruit) this solution more concentrated than solution inside fruit osmosis / diffusion movement of water out of fruit through partially permeable membrane (of fruit cells)

any four for 1 mark each

allow explanations in terms of concentrations of water molecules for full marks

7

(a) (i) water (molecules) enter(s) (the cell)
 or water (molecules) pass(es) through the (semi-permeable) cell membrane

by osmosis

or because the concentration of water is greater outside (the cell than inside it the vacuole)
accept because of the concentration gradient provided there is no contradiction

1

1

[4]

[4]

(ii) any **one** from

(it is) elastic

(it is) strong

(it is fully) permeable (to water) **or** water can pass through it do not credit semi-permeable do not credit cell membrane is semi-permeable

1

(b)	(the piece of) potato shrinks	
	or loses its turgor	
	or becomes flabby	
	or becomes flaccid	
	or plasmolysis occur	
	or cytoplasm pulls away from the cell wall	
	(because) concentration of sugar	
	or because concentration of water	1
		1
	(solution) is greater than concentration inside the cell / vacuole	
	inside the cell / vacuole is greater than concentration (of water) outside	
		1
	water is drawn out of the cell	
		1

[6]

8 any four from:

- cells used to treat diseases do not go on to produce a baby
- produces identical cells for research
- cells would not be rejected
- allow cells can form different types of cells
- (immature) egg contains only genetic information / DNA / genes / chromosomes from mother or there is only one parent
- asexual / no mixing of genetic material / no sperm involved / no fertilisation or chemical causes development
- baby is a clone
- reference to ethical / moral / religious issues

allow ethically wrong **NB** <u>cloning</u> is illegal gains **2** marks ignore unnatural

- risk of damage to the baby
 in correct context
- (a) (i) change in weight was due to changes in potato
 or osmosis or not due to outside liquid
 ignore 'to make fairtest'
 - (ii) beaker 2 = 15.1(%) gain *allow 15%*

beaker 4 = 21.8(5) loss **not** 21.7 allow –22% if no minus or no 'loss' checkgraph

beaker 5 = 29.8(%) loss allow -30%

9

[4]

1

1

1

(b)	(i)	both axes correct values and scales > $\frac{1}{2}$ of each axis		
		ignore lack of minus signs on vertical axis	1	
		points correct		
		< ± ½ square allow answers in (a)(ii)		
			1	
		line correct		
		allow curve of best fit which can miss 10, 15 or straight lines between points do not allow <u>one</u> straight line or sketched line		
		bar graph zero marks	1	
	(::)	noint where line process svis (or 15, 100(sucress)	1	
	(11)	point where line crosses axis (eg 15-16% sucrose) allow point from candidate's graph $(+0.5\%)$		
			1	
	(iii)	any two from:		
		looking for understanding that water in equilibrium		
		no change in mass		
		not net movement of water or water entry and exit are equal		
		because sucrose solution same concentration as cell sap or sucrose has same water potential as cell contents		
		allow because the concentrations are the same (inside and out)	2	[10]
(i)	in di	ffusion: material moves high to low concentration	1	
	here	e: concentration in cells > concentration in water or		
	upta	ike is against the concentration gradient or by diffusion ions would move out	1	
(ii)	acti	ve transport / active uptake		
			1	[3]