- Enzymes are made and used in all living organisms.
- (a) What is an enzyme?

1

(b) Many enzymes work inside cells.

In which part of a cell will most enzymes work?

Draw a ring around the correct answer.

(1)

(2)

(c) We can also use enzymes in industry.

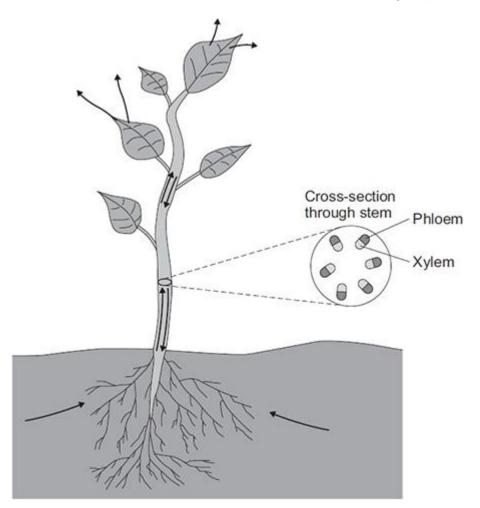
Hydrogen peroxide is a chemical that can be used to preserve milk.

Adding a small amount of hydrogen peroxide to the milk kills the bacteria that cause decay. Hydrogen peroxide does not kill all disease-causing bacteria.

The enzyme catalase can be added later to break down the hydrogen peroxide to oxygen and water.

A different way of preserving the milk is by heating it in large machines to 138 °C for a few seconds.

Suggest **one** advantage and **one** disadvantage of using hydrogen peroxide and catalase to preserve milk instead of using heat treatment.

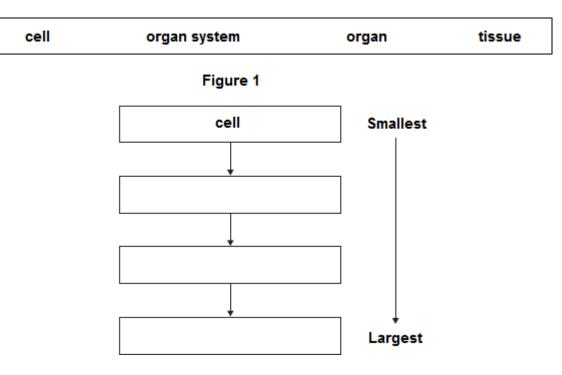

Advantage of hydrogen peroxide and catalase _____

Disadvantage of hydrogen peroxide and catalase

2 In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

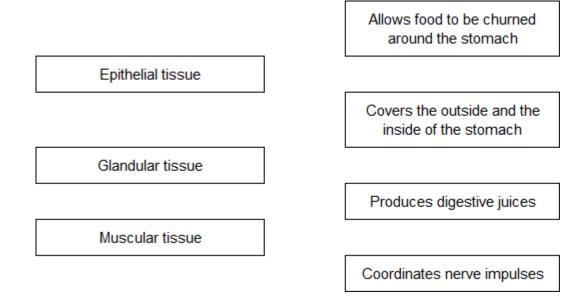
Plants transport many substances between their leaves and roots.

The diagram below shows the direction of movement of substances through a plant.


Describe how **ions**, **water** and **sugar** are obtained and transported through plants.

In your answer you should refer to materials moving upwards in a plant and to materials moving downwards in a plant.

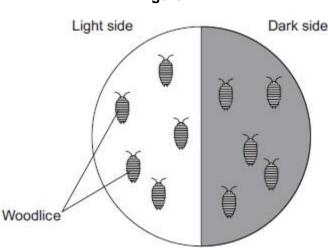
(Total 6 marks)


- **3** The human body is organised to carry out many different functions.
 - (a) Use words from the box to complete **Figure 1** by putting the parts of the body in order of size from smallest to largest.

The smallest one has been done for you.

(b) The stomach is made of different types of tissue.

Draw **one** line from each type of stomach tissue to the correct description.


(2)

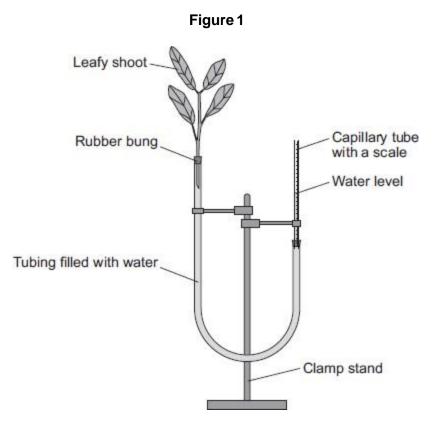
(c) Animals can react to their surroundings because they have nervous systems.

A student investigated the behaviour of small animals called woodlice.

The student set up the investigation as shown in Figure 2.

- The student covered one half of a Petri dish with black paper to make that side of the Petri dish dark.
- The other side had no cover.
- The student put five woodlice into each side of the dish and then put the clear Petri dish lid back on the dish.

After 30 minutes, all the woodlice had moved to the dark side of the Petri dish.



In this investigation, what is the response that the woodlice made?
The student concluded that woodlice prefer dark conditions.
Give two ways in which the student could improve the investigation to be sure that his conclusion was correct.
1
2

(Total 9 marks)

A potometer is a piece of apparatus that can be used to measure water uptake by a leafy shoot. 4

Figure 1 shows a potometer.

Some students used a potometer like the one shown in Figure 1.

- They measured the water taken up by a shoot in normal conditions in a classroom.
- As the water was taken up by the shoot, the level of water in the capillary tube went down. .
- The students recorded the level of the water in the capillary tube at 2-minute intervals for 10 minutes.

 Table 1 shows the students' results.

Table 1

Time in minutes	0	2	4	6	8	10
Level of water (on scale) in capillary tube in mm	2.5	3.6	4.4	5.4	6.5	7.5

The area of the cross section of the capillary tube was 0.8 mm².

 (a) (i) Complete the following calculation to find the volume of water taken up by the shoot in mm³ per minute.

Distance water moved along the scale in 10 minutes = ____mm

Volume of water taken up by the shoot in 10 minutes = ____mm³

Therefore, volume of water taken up by the shoot in 1 minute = _____mm³

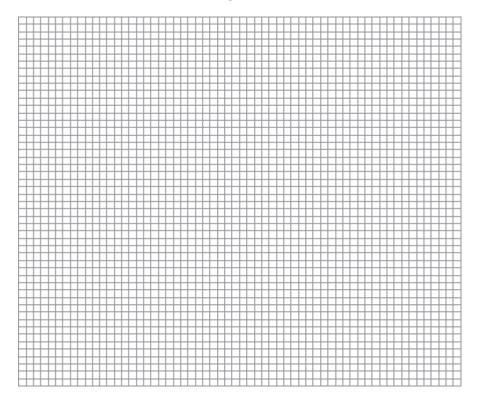
(ii) The students repeated the investigation but this time placed the potometer next to a fan blowing air over the leafy shoot.

Suggest how the results would be different. Give a reason for your answer.

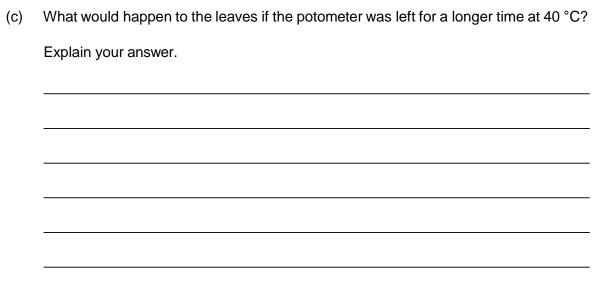
(2)

(3)

(b) The students repeated the investigation at different temperatures.

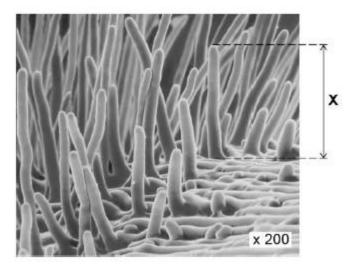

The results are shown in Table 2.

Temperature in °C	Rate of water uptake in mm ³ per minute
10	0
15	0.4
20	1.0
25	2.1
30	3.2
35	4.0
40	4.4


Plot the data from **Table 2** on the graph paper in **Figure 2**.

Choose suitable scales, label both axes and draw a line of best fit.

Figure 2



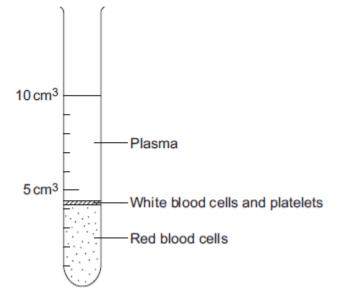
(5)

(3) (Total 13 marks)

5 The image below shows part of a root from a cress plant.

(a) What type of microscope was used to create the image above?

(b)	The magnification of the cress root in the image above is \times 200. There are 1000 micrometres (µm) in a millimetre (mm).	
	Calculate the real length of the root hair, X.	
	Give your answer in micrometres (µm).	
	Real length X =μm	(2)
(c)	Root hair cells take up water from the soil.	(2)
	Explain one way in which the root hair cell is adapted to this function.	
		(2)
The	table shows the water uptake by a plant's roots on two different days.	
	Mean water uptake in cm ³ per hour	


	Mean water uptake in cm ³ per hour
Cold day	1.8
Hot day	3.4

(d) Explain why the mean rate of water uptake is higher on a hot day than on a cold day.

(e)	The concentration of mineral ions in the soil is lower than in root hair cells.	
	Root hair cells take up mineral ions from the soil.	
	Root hair cells contain mitochondria.	
	Explain why root hair cells contain mitochondria.	
		(4)
	(To	(+) (tal 12 marks)

6 The parts of the blood can be separated from each other by spinning the blood in a centrifuge.

The image below shows the separated parts of a 10 cm³ blood sample.

(a) Calculate the percentage of the blood that is made up of plasma.

Answer =_____

(2)

%

(b) Name three chemical substances transported by the plasma.

.

1.	
2.	
3.	

(c) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

White blood cells are part of the immune system. White blood cells help the body to defend itself against pathogens.

Describe how pathogens cause infections **and** describe how the immune system defends the body against these pathogens.

(6) (Total 11 marks)

(3)

Mark schemes

1	(a)	a catalyst / speeds up a reaction	
•		ignore it is not used up	1
		it is a protein or it is specific / described or it has an active site allow it only acts on one molecule	
	(1)		1
	(b)	cytoplasm	1
	(c)	Advantage:	
		 any one from: heat would denature proteins in milk heat alters texture or flavour of milk catalase / enzyme is specific or only affects hydrogenperoxide less energy / fuel / lower temperature used so less expensive or lesspollution 	1
		Disadvantage:	
		any one from:	
		 (some pathogens may survive) causing illness catalase / enzyme left in milk or may cause allergies or may altertaste 	1

[5]

2 Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response.

Level 3 (5–6 marks):

Processes used for obtaining specified materials are given.

and

correctly linked to the vessels that the materials are transported in

or

correctly linked to a description of the direction of movement of the materials.

For full credit, in addition to the above descriptors at least one of the processes must be linked to the vessel that the material is transported in **and** the direction of the movement of the material.

Level 2 (3-4 marks):

At least one process for obtaining a specified material is given

and

is correctly linked to the vessel that the material is transported in

or

correctly linked to a description of the direction of movement of the material

Level 1 (1–2 marks):

At least one process (P) for obtaining a material is given

or

at least one vessel (V) and the material it carries is given

or

there is a description of the direction of movement (M) for at least **one** material

0 marks:

No relevant points are made

examples of points made in the response lons:

(P) taken up by diffusion or active transport

- from an area of high to low concentration (diffusion) **or** an area of low to high concentration (active transport)
 - (V) travels in the xylem
 - (M) to the leaves \mathbf{or} from the roots / soil

Water:

(P) taken up by osmosis
 from an area of low to high concentration

allow high concentration of water to low concentration of water

allow from high water potential to low water potential

ignore along a concentration gradient

- (V) travels in the xylem
- (M) to the leaves **or** from the roots / soil
- (P) transpiration stream
- movement replaces water as it evaporates from leaves
 (V) in the xylem

Sugar:

(P) made during photosynthesis

- (V) travels in the phloem
- (M) to other parts of the plant **or** to storage organs **or** travels up and down

3	(a)	tissu	$ie \rightarrow organ \rightarrow organ system$ one right for 1 mark three right for 2 marks	2
	(b)	Epit	thelial tissue \rightarrow covers the outside and the inside of the stomach more than one line from a tissue = no mark	1
		Glar	ndular tissue \rightarrow produces digestive juices	1
		Mus	cular tissue \rightarrow allows food to be churned around the stomach	1
	(c)	(i)	light ignore dark	1
		(ii)	moving (to the dark)	1
		(iii)	any two from:	
			 use more woodlice repeat the experiment run for a longer time 	2 [9]
4	(a)	(i)	5.0	1
			(5 × 0.8) or 4 allow ecf from distance	1
			0.4 allow ecf from 10-min volume	1
		(ii)	increased (rate of uptake)	1
			more transpiration / evaporation	1

[6]

((b)) correct scal	es
	~	,	$\sim c$

5

allow reversed axes correctly labelled axes with units correct points one plot error = max 1 mark curved line of best fit allow correct straight line		
correct points one plot error = max 1 mark curved line of best fit allow correct straight line	1	
one plot error = max 1 mark curved line of best fit allow correct straight line	1	
curved line of best fit allow correct straight line	1	
allow correct straight line	2	
	1	
(c) leaves <u>wilt</u>	1	
because plants lose too much water (by evaporation)	1	
through the <u>stomata</u> or		
because cells become <u>plamolysed</u> or		
stomata close controlled by guard cells		
to prevent <u>wilting</u>	1	
		[13]
(a) electron (microscope)	1	
(b) $\frac{30000}{200}$		
an answer of 150 (µm) scores 2 marks	1	
150 (μm) if answer is incorrect allow for 1 mark sight of 0.015 / 0.15 / 1.5 / 15		
allow ecf for incorrect measurement of line X for max 1 mark	1	

(c)	either large surface area allow (vacuole contains) cell sap that is more concentrated than soil water (1)	1
	for more / faster osmosis create / maintain concentration / water potential gradient (1)	
	or	
	allow thin (cell) walls	
	for short(er) diffusion distance	1
(d)	(on hot day) more water lost allow converse for a cold day if clearly indicated	1
	more transpiration or	1
	more evaporation	1
	so more water taken up (by roots) to replace (water) loss (from leaves)	1
(e)	(aerobic) respiration occurs in mitochondria	
	do not accept anaerobic respiration	1
	(mitochondria / respiration) release energy	
	do not accept energy produced / made / created	1
	(energy used for) active transport	1
	to transport ions, against the concentration gradient or	
	from a low concentration to a high concentration	1 [12]
(a)	55%	
	2 marks for correct answer alone	

6

2

(b) any three from:

- amino acids
- antibodies
- antitoxins
- carbon dioxide
- cholesterol
- enzymes
- fatty acid
- glucose
- glycerol
- hormones / named hormones
- ions / named ions
- proteins
- urea
- vitamins
- water.

ignore blood cells and platelets ignore oxygen max 1 named example of each for ions and hormones allow minerals

(c) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking Guidance and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1 – 2 marks)

There is a description of pathogens with errors or roles confused.

or

the immune response with errors or roles confused.

Level 2 (3 – 4 marks)

There is a description of pathogens **and** the immune response with some errors or confusion

or

a clear description of either pathogens **or** the immune response with few errors or little confusion.

Level 3 (5 – 6 marks)

There is a good description of pathogens **and** the immune response with very few errors or omissions.

Examples of biology points made in the response:

- bacteria and viruses are pathogens
 - credit any ref to bacteria and viruses
- they reproduce rapidly inside the body
- bacteria may produce poisons / toxins (that make us feel ill)
- viruses live (and reproduce) inside cells (causing damage).

white blood cells help to defend against pathogens by:

- ingesting pathogens / bacteria / (cells containing) viruses credit engulf / digest / phagocytosis
- to destroy (particular) pathogen / bacteria / viruses
- producing antibodies
- to destroy particular / specific pathogens
- producing antitoxins
- to counteract toxins (released by pathogens)
 - credit memory cells / correct description
- this leads to immunity from that pathogen.

6