Glucose is broken down in respiration.
(a) What is the chemical formula for glucose?

Tick one box.

The diagram shows the apparatus a student used to investigate aerobic respiration.

Limewater goes cloudy when carbon dioxide is added to it.
(b) After 10 minutes the limewater in flask B was cloudy, but the limewater in flask A remained colourless.

Explain why.
\qquad
\qquad
\qquad
\qquad
(c) Flask A acts as a control in this investigation.

What is the purpose of a control?
\qquad
\qquad
(d) The student repeated the investigation with no woodlice.

Describe the appearance of the limewater in flask \mathbf{A} and flask \mathbf{B} after 10 minutes.
Flask A \qquad
\qquad
Flask B \qquad
\qquad

Anaerobic respiration is another form of respiration in living organisms.
(e) What is produced during anaerobic respiration in humans?

Tick one box.

Carbon dioxide

Carbon dioxide and lactic acid

Lactic acid

Oxygen and water

(f) Complete the equation for anaerobic respiration in yeast.
glucose $\quad \longrightarrow \quad$ carbon dioxide +

2 An athlete ran as fast as he could until he was exhausted.
(a) Figure 1 shows the concentrations of glucose and of lactic acid in the athlete's blood at the start and at the end of the run.

Figure 1

(i) Lactic acid is made during anaerobic respiration.

What does anaerobic mean?
\qquad
\qquad
(ii) Give evidence from Figure 1 that the athlete respired anaerobically during the run.
\qquad
\qquad
(b) Figure 2 shows the effect of running on the rate of blood flow through the athlete's muscles.

Figure 2

(i) For how many minutes did the athlete run?

Time $=$ \qquad minutes
(ii) Describe what happens to the rate of blood flow through the athlete's muscles during the run.

Use data from Figure 2 in your answer.
\qquad
\qquad
\qquad
\qquad
(iii) Explain how the change in blood flow to the athlete's muscles helps him to run.
\qquad

3 Figure 1 shows an athlete running on a treadmill.

Figure 1

© Starush/istock/Thinkstock
After running for several minutes, the athlete's leg muscles began to ache.
This ache was caused by a high concentration of lactic acid in the muscles.
(a) The equation shows how lactic acid is made.

$$
\text { glucose } \longrightarrow \text { lactic acid (+ energy) }
$$

Name the process that makes lactic acid in the athlete's muscles.
\qquad
(b) Scientists investigated the production of lactic acid by an athlete running at different speeds.

In the investigation:

- the athlete ran on the treadmill at 4 km per hour
- the scientists measured the concentration of lactic acid in the athlete's blood after 2 minutes of running.

The investigation was repeated for different running speeds.
Figure 2 shows the scientists' results.
Figure 2

(i) How much more lactic acid was there in the athlete's blood when he ran at 14 km per hour than when he ran at 8 km per hour?
\qquad
\qquad
\qquad
Answer $=\ldots \quad \mathrm{mmol}$ per dm ${ }^{3}$
(ii) Why is more lactic acid made in the muscles when running at 14 km per hour than when running at 8 km per hour?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4 A student ran on a treadmill for 5 minutes.
The speed of the treadmill was set at 12 km per hour.
The graph below shows the effect of the run on the student's heart rate.

(a) (i) What was the student's heart rate at rest?
___ beats per minute
(ii) After the end of the run, how long did it take for the student's heart rate to return to the resting heart rate?
minutes
(b) During the run, the student's muscles needed larger amounts of some substances than they needed at rest.
(i) Which two of the following substances were needed in larger amounts during the run?

Tick (.) two boxes.

glucose

lactic acid

oxygen

protein

(ii) Why are the two substances you chose in part (b)(i) needed in larger amounts during the run?

Tick (r) one box.

To help make more muscle fibres

To release more energy

To help the muscles to cool down

(c) After exercise, a fit person recovers faster than an unfit person.

Let the student's heart rate at the end of exercise $=\mathbf{a}$.
Let the student's heart rate after 2 minutes of recovery $=\mathbf{b}$.
The table below shows how the difference between \mathbf{a} and $\mathbf{b},(\mathbf{a}-\mathbf{b})$, is related to a person's level of fitness.

$(\mathbf{a}-\mathbf{b})$	Level of fitness
<22	Unfit
22 to 52	Normal fitness
53 to 58	Fit
59 to 65	Very fit
>65	Top athlete

What is the student's level of fitness?
Use information from the graph and the table.
$a=$ \qquad beats per minute
b = \qquad beats per minute
$(\mathbf{a}-\mathbf{b})=$ \qquad beats per minute

Level of fitness = \qquad
(d) The student repeated the run with the treadmill set at 16 km per hour.

The student's heart rate took 3 minutes longer to return to the normal resting rate than when running at 12 km per hour.

Give reasons why it took longer to recover after running faster.
\qquad

5 Photosynthesis needs light.
(a) Complete the balanced symbol equation for photosynthesis.

(b) A green chemical indicator shows changes in the concentration of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in a solution.

The indicator solution is green when the concentration of CO_{2} is normal.
The indicator solution turns yellow when the concentration of CO_{2} is high.
The indicator solution turns blue when the concentration of CO_{2} is very low or when there is no CO_{2}.

The indicator solution does not harm aquatic organisms.
Students investigated the balance of respiration and photosynthesis using an aquatic snail and some pondweed.

The students set up four tubes, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, as shown in the table below.
The colour change in each tube, after 24 hours in the light, is recorded.

Tube A	Tube B	Tube C	Tube D		
Indicator solution					
only				\quad	Indicator solution
:---:					
+ pondweed	\quad	Indicator solution			
:---:					
+ snail					

(i) What is the purpose of Tube A?
\qquad
\qquad
(ii) Explain why the indicator solution in Tube \mathbf{C} turns yellow.
\qquad
\qquad
\qquad
\qquad
(iii) Predict the result for Tube \mathbf{D} if it had been placed in the dark for 24 hours and not in the light.

Explain your prediction.
Prediction \qquad
\qquad
Explanation \qquad
\qquad
\qquad
\qquad

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Light intensity, carbon dioxide concentration and temperature are three factors that affect the rate of photosynthesis.

How would you investigate the effect of light intensity on the rate of photosynthesis?
The image below shows some of the apparatus you might use.

Not to scale
You should include details of:

- how you would set up the apparatus and the materials you would use
- the measurements you would make
- how you could make this a fair test.
\qquad
(Total 6 marks)

Mark schemes

(a) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(b) atmospheric air contains less carbon dioxide than exhaled air allow converse
(flask B goes more cloudy because) carbon dioxide is produced in (aerobic) respiration (by woodlice)
do not accept anaerobic respiration
(c) for comparison / to compare allow answers in the context of the investigation e.g.
or
to check that no other factor / variable is influencing the results
to prove that the results obtained were due to the woodlice respiring and nothing else
or
to prove that the woodlice produced the carbon dioxide and nothing else
(d) (flask A) would remain colourless
ignore references to clear
allow not cloudy
(flask B) would remain colourless
(e) lactic acid
(f) alcohol / ethanol
(a) (i) without oxygen
allow not enough oxygen
ignore air
ignore production of CO_{2}
ignore energy
(ii) more / high / increased lactic acid (at end)
allow approximate figures (to show increase)
ignore reference to glucose
(b) (i) 1.5
allow only 1.5 / 1½ / one and a half
(ii) increases at first and levels off ignore subsequent decrease
suitable use of numbers eg
rises to 10 / by 9 (dm^{3} per min)
or
increases up to $1.5(\mathrm{~min}) /$ levels off after $1.5(\mathrm{~min})$ (of x axis timescale) allow answer in range 1.4 to 1.5
or
after the first minute (of the run)
(iii) supplies (more) oxygen
supplies (more) glucose
need 'more/faster' once only for full marks
allow removes (more) CO_{2} / lactic acid / heat as an alternative for either marking point one or two, once only
for (more) respiration
releases (more) energy (for muscle contraction)
do not allow energy production or for respiration
(a) anaerobic respiration
allow phonetic spelling
(b) (i) 4.4
4.2, 4.3, 4.5 or 4.6 with figures in tolerance (6.7 to 6.9 and 2.3 to 2.5) and correct working gains 2 marks
4.2, 4.3, 4.5 or 4.6 with no working shown or correct working with one reading out of tolerance gains 1 mark
correct readings from graph in the ranges of 6.7 to 6.9 and 2.3 to 2.5 but no answer/wrong answer gains 1 mark
(ii) more energy is needed / used / released do not allow energy production
(at 14 km per hour)
ignore work
not enough oxygen (can be taken in / can be supplied to muscles) allow reference to oxygen debt do not allow less / no oxygen
so more anaerobic respiration (to supply the extra energy) or more glucose changed to lactic acid allow not enough aerobic respiration

4 (a) (i) 50
(ii) 4

$$
\text { accept } 3.9-4.0
$$

(b) (i) glucose
oxygen
(ii) to release more energy
(c) correct readings from graph:
$a=120$
$b=60$
allow 60-61
calculation correct for candidate's figures:
e.g. $a-b=60$
level of fitness correct for candidate's figures:
e.g. very fit
(d) any four from:

- higher heart rate (at $16 \mathrm{~km} / \mathrm{h}$) (so takes longer to slow to normal)
- more energy needed
- not enough O_{2} supplied / more O_{2} needed / reference to O_{2}-debt
- (more) anaerobic respiration
- (more) lactic acid made / to be broken down / to remove / to oxidise
- higher blood flow needed to deliver (the required amount of) oxygen.

'more' must be given at least once for full marks

do not allow more energy produced
allow higher blood flow to remove lactic acid / remove (additional) CO_{2}
(a) $6 \mathrm{H}_{2} \mathrm{O}$ in the correct order
(b) (i) control

> do not accept 'control variable'
allow:
to show the effect of the organisms
or
to allow comparison
or
to show the indicator doesn't change on its own
(ii) snail respires
releases CO_{2}
(iii) turns yellow
plant can't photosynthesise so CO_{2} not usedup
but the snail (and plant) still respires so CO_{2} produced

Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

Level 3 (5-6 marks):

A description of how the apparatus is used to measure the rate of photosynthesis at different light intensities is given.

For full marks reference must be made to a control variable
or
repeats

Level 2 (3-4 marks):

A description of how the apparatus is set up
and
a description of how photosynthesis can be measured.
or
a description of how light intensity is varied
Or
a control variable or any other relevant point

Level 1 (1-2 marks):

A partial description of how the apparatus is set up
or
a description of how light is supplied
or
a simple description of how photosynthesis can be measured.
or
a control variable

0 marks:

No relevant content.

examples of the points made in the response:

- apparatus set up:
- weed in water in beaker
- light shining on beaker
- method of varying the light intensity-eg changing distance of lamp from plant
- method of controlling other variables
- use same pond weed or same length of pond weed
- temperature: water bath or heat screen
$-\mathrm{CO}_{2}$
- leave sufficient time at each new light intensity before measurements taken
- method of measuring photosynthesis - eg counting bubbles of gas released or collecting gas and measuring volume in a syringe
- measuring rate of photosynthesis by counting bubbles for set period of time
- repetitions

extra information

allow information in the form of a diagram

