1

Copper is a widely used metal. The main ore of copper contains copper sulfide. Copper can be extracted from copper sulfide in a three stage process.

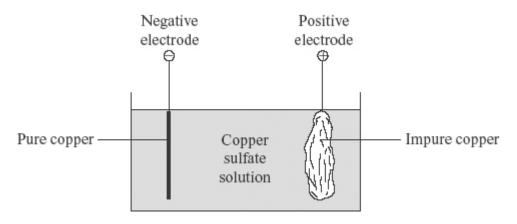
- (a) In the first stage of extraction the copper sulfide is heated in air.
 - (i) Balance the symbol equation for the reaction.

$$Cu_2S + \dots O_2 \rightarrow \dots CuO + SO_2$$

(1)

(ii) Explain why there would be an environmental problem if the gas from this reaction were allowed to escape into the atmosphere.

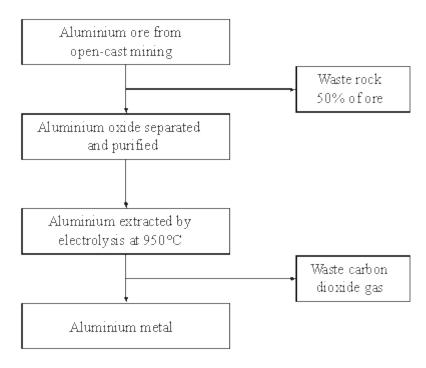
(2)


(b) In the second stage copper oxide, CuO, is reduced using carbon.

Describe and explain what happens during this reaction.

(2)

(c) During the third stage the copper can be purified as shown in the diagram.


(i) What is the name of the type of process used for this purification?

(1)

	(ii)	Give one use of purified copper.	
			(1)
(d)	Сор	oper-rich ores are running out.	
	Nev	wways of extracting copper from low grade ores are being researched.	
	Rec	cycling of copper may be better than extracting copper from its ores.	
	Ехр	olain why.	
			(3)
		(Total	10 marks)

Aluminium has many uses because of its low density, good electrical conductivity, flexibility and resistance to corrosion.

The main steps in the extraction of aluminium are shown in the flow chart.

(a)	Use the information in the flow chart to suggest the benefits of recycling aluminium.	
		(3)
(b)	Pure aluminium is rarely used for the construction of large objects. Small amounts of other metals are usually mixed with aluminium.	
	Explain why.	

(2)

(Total 5 marks)

3		Mar	ny everyday items are made from iron.	
	(a)	Hae	matite is an <i>ore</i> of iron. Haematite contains iron oxide, Fe ₂ O ₃ .	
		(i)	What is the meaning of the term <i>ore</i> ?	
				(1)
		(ii)	Iron can be produced by reacting iron oxide with carbon in a blast furnace.	
			What type of reaction produces the iron?	
				(4)
		(····)		(1)
		(iii)	The word equation for this reaction is:	

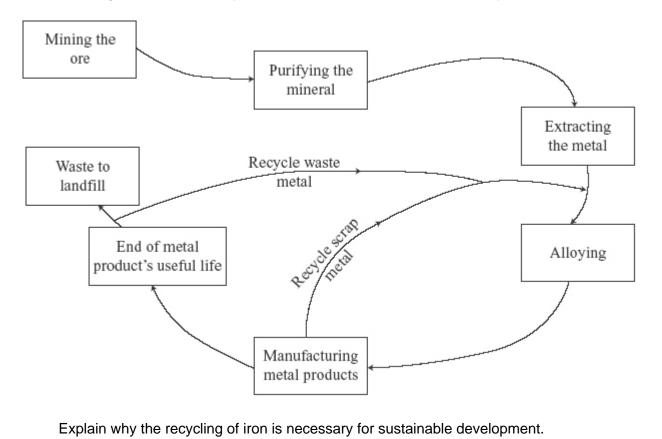
iron + carbon dioxide

iron oxide

....Fe₂O₃

carbon

+C


Complete and balance the symbol equation for this reaction.

(2)

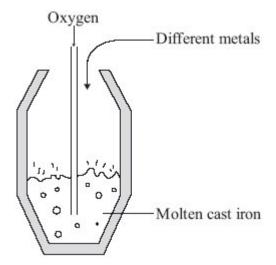
The iron from the blast furnace is very hard and brittle. It contains about 4% carbon and is used as cast iron. Pure iron Cast iron Explain the differences in the properties of pure iron and cast iron by referring to the diagrams.	Pure iron is relatively soft and not very strong		
Explain the differences in the properties of pure iron and cast iron by referring to the diagrams.		nd brittle. It contains about 4% carbon and is	
Explain the differences in the properties of pure iron and cast iron by referring to the diagrams.			
diagrams.	Pure iron	Cast iron	
		re iron and cast iron by referring to the	
(3)		(3)	.)

(b)

(c) The diagram shows the way in which iron is extracted, used and recycled.

(3)

(Total 10 marks)


The demand for iron and steel is high.

(a) Iron that is extracted from its oxide by carbon reduction in a blast furnace is called cast iron. Cast iron contains about 4% carbon. This carbon makes cast iron very brittle.

Carbon steels can be made by the following processes.

- Blowing oxygen into molten cast iron to remove most of the carbon.
- Adding a calculated amount of carbon.

Sometimes different metals may also be added to the molten carbon steels.

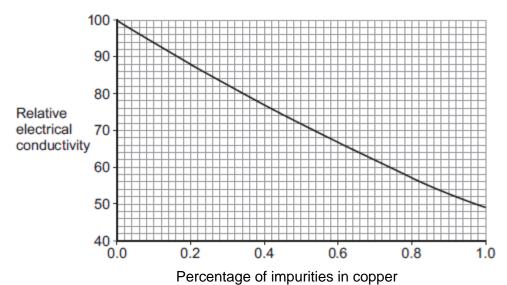
(i)	Suggest how blowing oxygen into molten cast iron removes most of the carbon.	
		(2)
(ii)	Why are different metals sometimes added to molten carbon steels?	
		(1)

(b) The percentage of iron and steel recycled in the UK has been increasing.

Year	%iron and steel recycled
1998	25
2000	35
2002	42
2004	46
2006	57

The UK government has set targets for the percentage of iron and steel to be recycled. In 2006 the target was exceeded.

Suggest two reasons why the UK government wants to encourage recycling of iron and


steer.	
1	
<u> </u>	
	(2)

(Total 5 marks)

This question is about copper.

(a) Most of the copper extracted is used in electric circuits.

The figure below shows how impurities change the electrical conductivity of copper.

.

Copper extracted by smelting is about 99% pure.

The 99% pure copper produced by smelting is purified to 99.9999% pure copper by electrolysis.

use values from the graph to explain wi	ny copper is purified to 99.9999%.

(2)

Read the information in the	box.
	Copper extraction
World demand for copper f	or the year 2011 was about 20 million tonnes.
World reserves of copper a	are estimated to be 700 million tonnes.
Most of the copper used is	obtained from copper ores, which are mined.
The copper ore chalcopyrit	e is heated in a furnace to produce copper sulfide, CuS
The furnace is heated by b	urning fossil fuels.
Air is then blown through th	he hot copper sulfide, to produce copper and sulfur dioxide. $\mbox{CuS} + \mbox{O}_2 \rightarrow \mbox{Cu} + \mbox{SO}_2$
A scientist made the stateme	ent: 'Copper should be recycled'.
Use the information in the bascientist's statement.	ox and your own knowledge and understanding to justify th

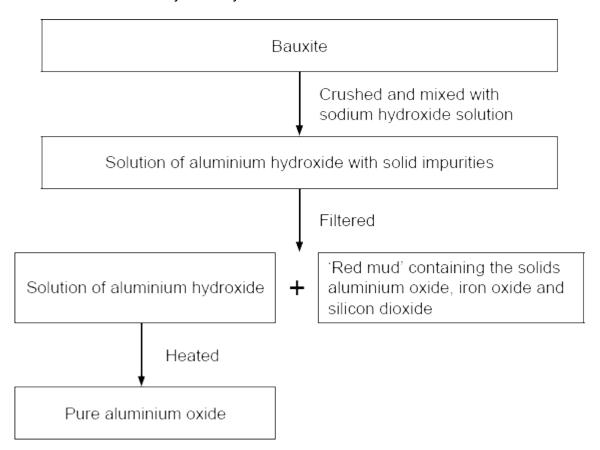
Extra space						
		in copper fron	n land that co	ntains very low	percentages c	of
copper comp					percentages c	of
copper comp	oounds.				percentages c	of
copper comp	oounds.				percentages o	of
copper comp	oounds.				percentages o	of
copper comp	oounds.				percentages o	of
copper comp	oounds.				percentages o	of
copper comp	oounds.	ounds are obt	ained by phyt			of
copper comp	oounds.	ounds are obt	ained by phyt	omining.		of
copper comp	oounds.	ounds are obt	ained by phyt	omining.		of

Cans for food and drinks are made from steel or aluminium. The main metal in steel is iron.

By Sun Ladder (Own work) [CC-BY-SA-3.0 or GFDL], via Wikimedia Commons

- (a) Iron is extracted by heating a mixture of iron oxide and carbon in a blast furnace.
 - (i) Name this type of reaction.

.....


(1)

(ii) Balance the symbol equation for this reaction.

$$2\text{Fe}_2\text{O}_3 + \text{C} \rightarrow \text{Fe} + \text{CO}_2$$

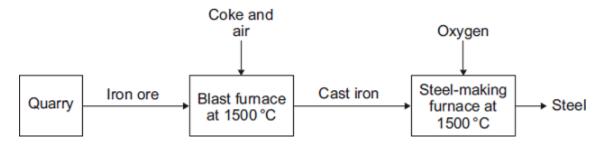
(1)

(b) Aluminium ore, bauxite, contains aluminium oxide, iron oxide and silicon dioxide. Aluminium is extracted by electrolysis of aluminium oxide.

The 'red mud' which is dumped in very large ponds contains:

Name of solid	Percentage (%)
Aluminium oxide	10
Iron oxide	65
Silicon dioxide	25

(i)	100 tonnes of bauxite produced 50 tonnes of pure aluminium oxide and 50 tonnes of 'red mud'.	
	What percentage of aluminium oxide did the bauxite contain?	
	Answer = %	(1)
(ii)	Apart from the solids shown in the table, name one other substance that would be in the 'red mud'.	
		(1)


	(iii)	The purification of the aluminium oxide is usually done near to the bauxite quarries.	
		Suggest one reason why.	
			(1)
(c)	Alun	ninium is used to make many things including cans.	
	Duri	ng one year in the USA:	
	•	100 billion aluminium cans were sold	
	•	55 billion aluminium cans were recycled.	
Give one environmental impact of recycling aluminium cans and one ethical or social impact of recycling aluminium cans. Environmental			
	Ethi	cal or social	
			(2)

(Total 7 marks)

7

The iron produced from iron ore in a blast furnace is called cast iron.

Cast iron is converted into steel in a furnace.

Iron ore contains iron oxide. Coke contains carbon.

(b)

(a)	Quarrying iron	ore will have	an impact on	everything nea	r to the quarry
-----	----------------	---------------	--------------	----------------	-----------------

(i)	Describe one positive impact and one negative impact of quarrying iron ore.					
positive impact						
	negative impact					
		(2)				
(ii)	Draw a ring around the correct answer to complete the senter	nce.				
		carbon neutral.				
	Ores contain enough metal to make extraction of the metal	economical.				
		reversible.				
		(1)				
Many chemical reactions take place in a blast furnace. Use the flow diagram to help you to answer this question.						
Sug	gest how the blast furnace is heated.					

(1)

		Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO ₂	
	(i)	Complete the word equation for this chemical reaction.	
		+ carbon monoxide → iron +	(2)
	(ii)	Draw a ring around the correct answer to complete the sentence	i.
		decomposition.	
		Iron is extracted from its ore by oxidation.	
		reduction.	
			(1)
(d)		t iron contains about 4% carbon. t iron is converted into low-carbon steels.	
	(i)	Low-carbon steel is produced by blowing oxygen into molten case	st iron.
		Suggest how oxygen removes most of the carbon.	
			(2)
	(ii)	Draw a ring around the correct answer to complete the sentence	·.
			corrode easily.
		Metals, such as nickel, are added to low-carbon steels to make the steel	easy to shape.
			much harder.
		_	(1)

A chemical reaction for the extraction of iron is:

(c)

(e) Recycling steel uses less energy than producing steel from iron ore.

Tick (✓) **one** advantage and Tick (✓) **one** disadvantage of recycling steel.

Statement	Advantage Tick (√)	Disadvantage Tick (√)
Iron is the second most common metal in the Earth's crust.		
Less carbon dioxide is produced.		
More iron ore needs to be mined.		
There are different types of steel which must be sorted.		

(2)

(Total 12 marks)

Mark schemes

- 1
- (a) (i) $Cu_2S + 2O_2 \otimes 2CuO + SO_2$ accept fractions and multiple

1

- (ii) any **two** from:
 - sulfur dioxide
 accept sulphur dioxide / sulphur oxide / SO₂
 - causes acid rain
 ignore other comments eg global warming / ozone / global
 dimming / greenhouse effect
 - consequence of acid rain eg kills fish / plants

2

- (b) any **two** from:
 - heat (copper oxide with carbon)
 - oxygen is removed by carbon accept copper (oxide) loses oxygen

or

carbon gains oxygen accept carbon oxide

or

carbon monoxide / carbon dioxide is produced

or

carbon displaces copper

accept a correct word or balanced
symbol equation

 because carbon is more reactive than copper allow a correct comparison of reactivity

2

(c)	(i)	electrolysis accept electroplating	
	(ii)	(electrical) wiring / appliances / coins / pipes / cladding for buildings / jewellery / making alloys	1
		or	
		named alloys	
(d)	any	three explanations from:	
	for r	ecycling	
	•	less acid rain (pollution)	
	•	copper reserves last longer / conserved	
		or	
		do not run out	
	•	energy for extraction (saved)	
		or	
		less energy required	
	•	less mining / quarrying	
	•	less waste (copper) / electrical appliances dumped	
		or	
		less landfill	
		against recycling	
	•	collection problems	
	•	transport problems	
	•	difficult to separate copper from appliances	
	•	energy used to melt the collected copper ignore electrolysis / pollution ignore ideas about less machinery / plant ignore idea of cost	3

[10]

- (a) any three from:
- resources / aluminium / ores are conserved accept converse argument
- less / no mining or less associated environmental problems eg quarrying / eyesore / dust / traffic / noise / loss of land / habitat ignore just pollution
- less / no waste (rock) / landfill
 do not accept 'wastes 50% of the ore'
- no purification / separation (of aluminium oxide)
- (aluminium extraction / production) has high energy / electricity / heat / temperature requirements
- less carbon dioxide produced accept no carbon dioxide produced ignore references to cost

(b) statement

ignore density

1

1

3

linked reason

eg
(pure) Al / it is weak / soft (1)
as layers / rows can slide (over each other) (1)

or
alloy / other metals / they make it stronger / harder (1)
stops layers / rows sliding over each other (1)
accept disrupts the structure owtte if no other mark awarded
accept to form an alloy or to change properties for 1 mark

[5]

3		(a) (i) contain enough metal to make it economical / worth while to extract
		(ii) reduction accept displacement accept redox
		(iii) Fe + CO_2 do not accept Fe ₂ / Fe ₄
		correct balancing accept multiples and halves
		2 Fe ₂ O ₃ + 3 C → 4 Fe + 3 CO ₂ allow Fe ₂ / Fe ₄ as ecf
	(b)	Pure Iron
		(in pure metal all the atoms are the same size and) able to slip / slide over each other – (property soft) OWTTE ignore references to molecules / particles if they say 'move' both times, allow one mark but 'crack' or 'split' is

wrong..

(in cast iron) different sized atoms / larger atoms ${f or}$ structure is distorted / disrupted ${\it OWTTE}$

so it is difficult for layers of atoms to slip / slide over each other $\ensuremath{\textit{OWTTE}}$

Page 22 of 31

1

1

1

1

1

1

1

	(c)	any	three from:		
		•	conserves / saves resources / metal ores		
		•	saves energy resources (used for extraction / processing) accept cheaper / saves money		
		•	decreases waste materials		
		•	decreases a named pollution do not accept acid rain	3	[10]
4		(a)	(i) reacts with carbon / C accept burns / oxidises carbon	1	
			carbon dioxide / CO ₂ / gas is formed / given off accept carbon monoxide / CO accept correctly balanced equation for 2 marks ignore state symbols	1	
		(ii)	change / improve properties accept any specific property accept to make alloys / special steels ignore brittle		

(b) any **two** from:

- to conserve ores / iron
 accept ores / iron are non-renewable / non-sustainable
 allow less quarrying / mining
- to prevent the use of landfills allow reduce waste
- to conserve energy / fuel
 accept fossil fuels are non-renewable
- to reduce carbon / carbon dioxide emissions
- to meet EU / International targets
 ignore costs / demand

2

[5]

(a) pure copper is twice as good a conductor as 99% pure copper accept reverse argument
 accept answers quoting 2 correct values from the graph scores 2 qualitative answer (e.g. pure copper is a better conductor than impure copper) scores 1

or

5

answers quoting a conductivity value from the graph scores 1

2

(b) Marks awarded for this answer will be determined by the Quality of Communication (QC) as well as the standard of the scientific response.

0 marks

No relevant content

Level 1 (1-2 marks)

Simple list of a limited number of points given, with no linking between ideas

Level 2 (3-4 marks)

A broader set of points made. There will probably not be links between ideas

Level 3 (5-6 marks)

Answer includes linking between ideas, showing the consequence of either not recycling or the advantage of recycling. Answers such as less fossil fuel needed <u>so</u> less carbon dioxide produced <u>or</u> less carbon dioxide produced <u>so</u> less global warming

examples of the points made in the response

resources

(recycling) conserves supplies of ores

copper available for longer

as (at present rate of use) copper ores will run out in about 35 years

(recycling) conserves supplies of fossil fuels or energy

less fuel used at a lower cost

land pollution

mining scars landscape **or** produces noise pollution mining destroys wildlife habitats

(recycling) less need to mine ores / fossil fuels

so less habitat destroyed or less scarring of landscape

(recycling) less need to use landfill for waste

atmospheric pollution

burning fossil fuels produces carbon dioxide / greenhouse gas which (may) cause global warming **or** climate change

extraction produces sulfur dioxide

which causes acid rain

which can kill trees / fish

(c) grow plants

accept plants absorb copper (through roots)

then plants are burned

ash (from burning) contains copper compounds

F4 -

6

1

1

1

[11]

	(a)	(i)	reduction accept redox / smelting	
	(ii)	3 4 3		1
(b)	(i)	55		1
(-)	(-)		ignore other units	
	(ii)	Wate	accept sodium hydroxide accept correct formulae H ₂ O or NaOH	1
	(iii)	any	one from:	
		• sa	ive energy / fuel for transporting the ore accept less (cost of) transport allow transported quickly	
		·	ld) quarries nearby for waste/red mud	1
(c)		ironm		
	any	one fr	om:	
	• le	ss min	ing / quarrying (of bauxite) allow loss of habitat / less qualified noise pollution	
	• le	ss land	dfill space needed / used allow less red mud / waste	
	• le	ss use	of fossil fuels / energy	
	• le	ss car	bon dioxide produced	1
	Ethi	cal or	social	
	any	one fr	om:	
	• sa	aves re	esources allow using resources more than once	
	• cr	eates	(local) employment if answers reversed and both correct award 1 mark	
	• m	ore pe	eople aware of the need for recycling allow less qualified noise pollution if not given in environmental	1

	(a)	(i) Positive impact	
		any one from:	
		• provides employment or	
		improves local economy	
		improved transport - new roads are built, new rail links	
		after use the quarry could provide recreation facilities	
		Negative impact	1
		any one from:	
		destruction of animal habitats	
		fewer plants and trees to absorb carbon dioxide	
		• visual pollution or noise pollution or atmospheric / air pollution allow dust pollution	
		more traffic	
		uses non-renewable resources	
		allow pollutants from burning diesel	1
	(ii)	economical	
(l ₂)			1
(b)	carb	on / coke burns (in oxygen / air) accept carbon / coke reacts with oxygen / air	
			1
(c)	(i)	iron oxide (reactant) must be words	
			1
		carbon dioxide (product)	1
	(ii)	reduction	
/ al\	(:)		1
(d)	(i)	oxygen <u>reacts with</u> carbon	1

		or		
		oxygen and carbon produce carbon dioxide / carbon monoxide		
		carbon dioxide / carbon monoxide is a gas		
		or		
		the carbon is removed as a gas		
	(ii)	much harder	1	
	` ,		1	
(e)	Adv	Advantage: ess carbon dioxide is produced		
	less			
			1	
	Disa	Disadvantage:		
	there are different types of steel which must be sorted			

1

[12]

Examiner reports

1

The majority of these candidates could not balance symbol equations for chemical reactions but a few achieved good marks in part (a)(ii), usually by realising that acid rain could be produced and by stating that the gas was sulfur dioxide or by giving an environmental problem caused by acid rain. The better candidates appreciated that the reactants, copper oxide and carbon, would need to be heated for the carbon to 'take away' the oxygen from the copper. There were some correct descriptions of displacement, although the majority of these candidates did not realise that this is caused by of the relative reactivities of copper and carbon. The process of electrolysis was unfamiliar to most candidates but the majority gave a correct use for purified copper. Surprisingly few candidates gave good explanations of why they were in favour of recycling. Most marks were awarded for the idea of copper ores 'running out' or for recognising that there are problems with waste as landfill space is limited. Only the more able candidates mentioned that less energy would be required for the extraction processes and/or that there would be less mining/quarrying needed hence reducing the associated environmental problems.

2

In part (a) most candidates were able to use the flow chart to suggest the benefits of recycling aluminium.

Part (b) produced good answers although many candidates provided no explanation and therefore only scored one mark.

3

Surprisingly, candidates found part (a) difficult. Few could explain what an ore was. Acceptance of reduction, displacement and redox in part(a)(ii) meant that many candidates got the mark, but a disappointing number gave oxidation and even chemical reaction as the answer. A lot of candidates could not balance the equation, with a large number writing iron as Fe_2 .

Part (b) was less of a problem as most candidates answered this well.

There were a variety of possible correct responses to part (c). Few candidates picked up all three marks although there were a lot of good, if not complete, explanations. A minority blamed unrecycled iron for global warming, global dimming, destroying the ozone layer and acid rain.

- (a) (i) This part was well answered with most candidates gaining at least one mark. The reaction of carbon with oxygen to form carbon dioxide is well known. Incorrect answers often suggested that the oxygen would displace either the carbon or the iron.
- (ii) The second part was also well answered. Stronger was by far the most common correct response followed closely by to make alloys.

- (b) The suggestions that recycling was to be encouraged to conserve iron ores and conserve energy were the most popular correct ideas. Candidates seemed very familiar with the subject matter of this question.
- (a) Despite the instruction to use values from the graph, some students ignored this and gave a simple qualitative description. A common error was to read a value from the graph for 99.9% pure copper (0.1% impurities) and state it was the value for 99% pure copper.
 - (b) There were many excellent answers, with students using the information in the question as well as their own knowledge. Many students filled all the available space and went onto continuation sheets. More planning before starting to write will ensure that a concise answer can be given as there is no additional credit for lengthy answers.
 - (c) Most students were aware that plants are grown, absorb copper ions and are then burned. However, fewer realised that the ashes contain copper compounds, many answers stating or implying that the element copper can be collected from the ash.
 - (a) (i) Surprisingly only about a third of students realised that the extraction of iron was a reduction process.
 - (ii) About half of the students could correctly balance the equation.

6

7

- (b) (i) Very few students calculated that there was 55% aluminium oxide in the bauxite.
 - (ii) Few students realised that there would also be water or sodium hydroxide in the red mud.
 - (iii) A slight majority of students correctly suggested that the advantage of the bauxite quarry and extraction plant being close was related to transport.
- (c) In this last part, students struggled to appreciate the difference between environmental impacts and ethical or social impacts. Many students confuse recycling with re-using.
 - (a) (i) Most students gained at least one mark. The most common correct answers were 'provides jobs' and a 'specified type of pollution'. There were a number of vague answers that did not describe the impacts and just stated 'pollution' or 'carbon dioxide produced' or 'non-renewable'. A number of students also referred to the process of producing iron or steel instead of the quarrying of iron ore.
 - (ii) Few students knew that ores contain enough metal to make extraction of the metal economic.

- (b) Surprisingly poorly answered because most students thought that 'by coke' or by 'coke and air' were sufficient for the answer. There were a range of interesting responses that did not gain credit such as, the blast furnace is heated by 'the Sun', 'a bunsen burner', 'hot air', 'a flame', 'fire' and 'electrolysis'. Although many students mentioned coke and air, they did not state they react just that they are added. Several students did not mention coke but suggested other fuels such as coal or natural gas as being used to heat the blast furnace.
- (c) (i) Many correct answers were given but it is surprising that a significant number of students still could not name iron oxide calling it iron ore and carbon dioxide was often called 'carbonate', 'cobalt' or 'carbon monoxide'.
 - (ii) Few students understood that iron is extracted from its ore by reduction.
- (d) (i) Very few students gained any marks. The most common incorrect idea was that oxygen is stronger so it pushes or blows the carbon out. Most students who got one mark did so for knowing that carbon dioxide is produced. Other incorrect suggestions were that oxygen is more reactive than carbon so removes it by decomposition or by neutralisation or by reduction.
 - (ii) Most students knew that metals, such as nickel, are added to low-carbon steels to make the steel much harder.
- (e) Most students gained at least one mark. The most common correct answer was the advantage that less carbon dioxide is produced. Several students thought that four ticks were needed, that is, one in each row. Many incorrectly thought that the disadvantage was more iron needs to be mined.