

1. Show that the following statement is true $5(3x-5) - 2(2x+9) \equiv 11x - 43$ 5(3x-5) - 2(2x+9) = 15x - 25 - 4x - 18 = 15x - 4x - 25 - 18 = 11x - 43(1 mark)

2. Show that the following statement is true $(n-2)^{2} - (n-5)^{2} \equiv 3(2n-7)$ $(n-2)^{2} - (n-5)^{2} = (n-2)(n-2) - (n-5)(n-5)$ $= n^{2} - 2n - 2n + 4 - (n^{2} - 5n - 5n + 25)$ $= n^{2} - 4n + 4 - (n^{2} - 10n + 25)$ $= n^{2} - 4n + 4 - n^{2} + 10n - 25$ $= n^{2} - n^{2} - 4n + 10n + 4 - 25$ = 6n - 21 = 3(2n - 7)(2 marks)

3. Show that the following statement is true $(n+2)^2 - 3(n+4) \equiv (n+4)(n-3) + 4$ $(n+2)^2 - 3(n+4) = (n+2)(n+2) - 3(n+4)$ $= n^2 + 2n + 2n + 4 - 3n - 12$ $= n^2 + n - 12 + 4$ = (n+4)(n-3) + 4(2 marks)

4. Show that the following statement is true $3(n+3)(n-1) - 3(1-n) \equiv (3n-3)(n+4)$ $3(n+3)(n-1) - 3(1-n) = 3(n^2 + 3n - n - 3) - (3 - 3n)$ $= 3(n^2 + 2n - 3) - 3 + 3n$ $= 3n^2 + 6n - 9 - 3 + 3n$ $= 3n^2 + 9n - 12$ = (3n - 3)(n + 4)(2 marks) 5. Prove that

$$(n+3)^2 + n(3-n) - 3(n+4)$$

is a multiple of 3 for all integer values of n.

$$(n+3)^{2} + n(3-n) - 3(n+4) = (n+3)(n+3) + (3n - n^{2}) - (3n+12)$$

= $n^{2} + 3n + 3n + 9 + 3n - n^{2} - 3n - 12$
= $6n - 3$
= $3(2n - 1)$

3 can be removed as a factor, so is divisible by 3 and therefore a multiple of 3.

(2 marks)

6. Prove algebraically that the sum of two consecutive numbers is odd. If a number is n, then the next number is n + 1. The sum is therefore n + n + 1 = 2n + 1By definition, 2n is even, and so 2n + 1 must be odd. (2 marks) 7. Prove algebraically that the sum of the squares of two consecutive multiples of 5 is not a multiple of 10.

A multiple of 5 would be 5n, the next consecutive multiple of 5 would be 5n + 5

 $(5n)^2 + (5n + 5)^2 = 25n^2 + 25n^2 + 25n + 25n + 25$ = $50n^2 + 50n + 25$

What would the remainder be if this number were divided by 10?

 $50n^2 + 50n + 25 = 10(5n^2 + 5n + 2) + 5$

Remainder of 5

(2 marks, 1 mark)

8. Tom says that 7x - (2x + 3)(x + 2) is always negative.

Is he correct? Explain your answer.

$$7x - (2x + 3)(x + 2) = 7x - (2x^{2} + 4x + 4x + 6)$$

= 7x - 2x² - 8x - 6
= -2x² - x - 6
= -(2x² + x + 6)

 $2x^2 + x + 6$ is always positive, so multiplying by negative number means that the answer is always negative, as tom suggest.

Change a single number in Tom's statement that would lead to a change in your conclusion. Why is this the case?

Changing the +3 into a -3 or +2 into a -2 would give a negative number when expanding the brackets, but would then be made positive when multiplying by negative 1.

(3 marks, 1 mark)

9. Show that the difference between 14^{20} and 21^{2} is a multiple of 7.

$$14^{20} - 21^{2} = (7 \times 2)^{20} - (7 \times 3)^{2}$$

= 7²⁰ × 2²⁰ - 7² × 3²
= 7(7¹⁹ × 2²⁰ - 7 × 3²)

A factor of 7 can be taken out, so the answer must be divisible by 7, and therefore a multiple of 7.

(3 marks)

10. Show that $3^{60} - 25$ is not a prime number.

3⁶⁰ is always odd, because you are multiplying odd numbers. 25 is odd.

The difference between two odd numbers, i.e. subtracting them, is always even.

 $3^{60} - 25$ is going to be even.

All even numbers are divisible by 2, so $3^{60} - 25$ is not prime.

(2 marks)

11. Part of a 10x10 1-100 number grid is pictured below.

2	3	4	5
12	13	14	15
22	23	24	25
32	33	34	35
42	43	44	45
	12 22 32	12 13 22 23 32 33	12 13 14 22 23 24 32 33 34

A 2x2 square of numbers is selected. The following operation is performed:

Difference of the leading diagonal \times Difference of the other diagonal

 $(23 - 12) \times (22 - 13) = 11 \times 9 = 99$

Verify that this is also the case for a different 2x2 square of numbers on the grid.

Consider the square shown, for example:

 $(44 - 33) \times (43 - 34) = 11 \times 9 = 99$

By generalising, prove this result for all possible 2x2 squares on the grid.

Taking the top left number as n, the other numbers can be written in terms of n.

n	n+1
n + 10	n + 11

 $(n + 11 - n) \times (n + 10 - (n + 1)) = 11 \times (n + 10 - n - 1) = 11 \times 9 = 99$

(1 mark, 3 marks)

12. The quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

is a re-arrangement of the general quadratic equation

$$ax^2 + bx + c = 0$$

By completing the square on the general quadratic equation, prove this result.

 $ax^2 + bx + c = 0$ $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$ $\left(x+\frac{b}{2a}\right)^2 + \frac{c}{a} - \frac{b^2}{4a^2} = 0$ $\left(x+\frac{b}{2a}\right)^2 + \frac{4ac}{4a^2} - \frac{b^2}{4a^2} = 0$ $\left(x+\frac{b}{2a}\right)^2 + \frac{4ac-b^2}{4a^2} = 0$ $\left(x + \frac{b}{2a}\right)^2 = -\frac{4ac - b^2}{4a^2}$ $\left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2}$ $x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$ $x + \frac{b}{2a} = \frac{\pm \sqrt{b^2 - 4ac}}{\sqrt{4a^2}}$

$$x + \frac{b}{2a} = \frac{\pm\sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{\pm\sqrt{b^2 - 4ac}}{2a} - \frac{b}{2a}$$

$$x = \frac{-b \pm\sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-b \pm\sqrt{b^2 - 4ac}}{2a}$$
(5 marks)