AQA, OCR, Edexcel GCSE

GCSE Maths

Proof

Name:

M \mathbf{M} E Mathsmadeeasy.co.uk

Guidance

1. Read each question carefully.
2. Don't spend too long on each question.
3. Attempt every question.
4. Always show your workings.

Revise GCSE Maths: www.MathsMadeEasy.co.uk/gcse-maths-revision/

1. Show that the following statement is true

$$
\begin{aligned}
5(3 x-5)-2(2 x & +9) \equiv 11 x-43 \\
5(3 x-5)-2(2 x+9) & =15 x-25-4 x-18 \\
& =15 x-4 x-25-18 \\
& =11 x-43
\end{aligned}
$$

2. Show that the following statement is true

$$
\begin{aligned}
&(n-2)^{2}-(n-5)^{2} \equiv 3(2 n-7) \\
&(n-2)^{2}-(n-5)^{2}=(n-2)(n-2)-(n-5)(n-5) \\
&=n^{2}-2 n-2 n+4-\left(n^{2}-5 n-5 n+25\right) \\
&=n^{2}-4 n+4-\left(n^{2}-10 n+25\right) \\
&=n^{2}-4 n+4-n^{2}+10 n-25 \\
&=n^{2}-n^{2}-4 n+10 n+4-25 \\
&=6 n-21 \\
&=3(2 n-7)
\end{aligned}
$$

3. Show that the following statement is true

$$
\begin{aligned}
(n+2)^{2}-3(n & +4) \equiv(n+4)(n-3)+4 \\
(n+2)^{2}-3(n+4) & =(n+2)(n+2)-3(n+4) \\
& =n^{2}+2 n+2 n+4-3 n-12 \\
& =n^{2}+n-12+4 \\
& =(n+4)(n-3)+4
\end{aligned}
$$

4. Show that the following statement is true

$$
\begin{aligned}
3(n+3)(n-1)-3 & (1-n) \equiv(3 n-3)(n+4) \\
3(n+3)(n-1)-3(1-n) & =3\left(n^{2}+3 n-n-3\right)-(3-3 n) \\
& =3\left(n^{2}+2 n-3\right)-3+3 n \\
& =3 n^{2}+6 n-9-3+3 n \\
& =3 n^{2}+9 n-12 \\
& =(3 n-3)(n+4)
\end{aligned}
$$

5. Prove that

$$
(n+3)^{2}+n(3-n)-3(n+4)
$$

is a multiple of 3 for all integer values of n.

$$
\begin{aligned}
(n+3)^{2}+n(3-n)-3(n+4) & =(n+3)(n+3)+\left(3 n-n^{2}\right)-(3 n+12) \\
& =n^{2}+3 n+3 n+9+3 n-n^{2}-3 n-12 \\
& =6 n-3 \\
& =3(2 n-1)
\end{aligned}
$$

3 can be removed as a factor, so is divisible by 3 and therefore a multiple of 3 .
6. Prove algebraically that the sum of two consecutive numbers is odd.

If a number is n, then the next number is $n+1$.
The sum is therefore $n+n+1=2 n+1$
By definition, $2 n$ is even, and so $2 n+1$ must be odd.

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
7. Prove algebraically that the sum of the squares of two consecutive multiples of 5 is not a multiple of 10 .

A multiple of 5 would be $5 n$, the next consecutive multiple of 5 would be $5 n+5$

$$
\begin{gathered}
(5 n)^{2}+(5 n+5)^{2}=25 n^{2}+25 n^{2}+25 n+25 n+25 \\
= \\
=50 n^{2}+50 n+25
\end{gathered}
$$

What would the remainder be if this number were divided by 10 ?

$$
50 n^{2}+50 n+25=10\left(5 n^{2}+5 n+2\right)+5
$$

Remainder of 5

8. Tom says that $7 x-(2 x+3)(x+2)$ is always negative.

Is he correct? Explain your answer.

$$
\begin{aligned}
7 x-(2 x+3)(x+2) & =7 x-\left(2 x^{2}+4 x+4 x+6\right) \\
& =7 x-2 x^{2}-8 x-6 \\
& =-2 x^{2}-x-6 \\
& =-\left(2 x^{2}+x+6\right)
\end{aligned}
$$

$2 x^{2}+x+6$ is always positive, so multiplying by negative number means that the answer is always negative, as tom suggest.

Change a single number in Tom's statement that would lead to a change in your conclusion. Why is this the case?

Changing the +3 into a -3 or +2 into a -2 would give a negative number when expanding the brackets, but would then be made positive when multiplying by negative 1.

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
9. Show that the difference between 14^{20} and 21^{2} is a multiple of 7 .

$$
\begin{aligned}
14^{20}-21^{2} & =(7 \times 2)^{20}-(7 \times 3)^{2} \\
& =7^{20} \times 2^{20}-7^{2} \times 3^{2} \\
& =7\left(7^{19} \times 2^{20}-7 \times 3^{2}\right)
\end{aligned}
$$

A factor of 7 can be taken out, so the answer must be divisible by 7 , and therefore a multiple of 7.
10. Show that $3^{60}-25$ is not a prime number.
3^{60} is always odd, because you are multiplying odd numbers.
25 is odd.
The difference between two odd numbers, i.e. subtracting them, is always even.

$$
3^{60}-25 \text { is going to be even. }
$$

All even numbers are divisible by 2 , so $3^{60}-25$ is not prime.

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
11. Part of a 10×10 1-100 number grid is pictured below.

1	2	3	4	5
11	12	13	14	15
21	22	23	24	25
31	32	33	34	35
41	42	43	44	45

A 2×2 square of numbers is selected.
The following operation is performed:
Difference of the leading diagonal \times Difference of the other diagonal

$$
(23-12) \times(22-13)=11 \times 9=99
$$

Verify that this is also the case for a different 2×2 square of numbers on the grid.
Consider the square shown, for example:

$$
(44-33) \times(43-34)=11 \times 9=99
$$

By generalising, prove this result for all possible 2×2 squares on the grid.
Taking the top left number as n, the other numbers can be written in terms of n.

$$
(n+11-n) \times(n+10-(n+1))=11 \times(n+10-n-1)=11 \times 9=99
$$

12. The quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

is a re-arrangement of the general quadratic equation

$$
a x^{2}+b x+c=0
$$

By completing the square on the general quadratic equation, prove this result.

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
x^{2}+\frac{b}{a} x+\frac{c}{a}=0 \\
\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\frac{b^{2}}{4 a^{2}}=0 \\
\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c}{4 a^{2}}-\frac{b^{2}}{4 a^{2}}=0 \\
\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}}=0 \\
\left(x+\frac{b}{2 a}\right)^{2}=-\frac{4 a c-b^{2}}{4 a^{2}} \\
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} \\
x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
x+\frac{b}{2 a}=\frac{ \pm \sqrt{b^{2}-4 a c}}{\sqrt{4 a^{2}}}
\end{gathered}
$$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

$$
\begin{aligned}
& x+\frac{b}{2 a}=\frac{ \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{ \pm \sqrt{b^{2}-4 a c}}{2 a}-\frac{b}{2 a} \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

