The diagram shows how scientists can use genetic engineering to produce human growth hormone.

1

(a) Human growth hormone is made by the pituitary gland.

The human DNA containing the gene for growth hormone can be taken from a white blood cell.

Give the reason why the gene does **not** have to be taken from cells in the pituitary gland.

The figure above shows that the plasmid contains two genes for antibiotic resistance:

- a gene for resistance to the antibiotic ampicillin
- a gene for resistance to the antibiotic tetracycline.
- (b) Explain how the structure of **Enzyme 1** allows it to cut the gene for tetracycline resistance, but **not** the gene for ampicillin resistance.

(3)

(c) In the final step of the diagram above, very few bacteria take up a plasmid containing the gene for growth hormone.

Some bacteria take up an unmodified plasmid.

Most bacteria do **not** take up a plasmid.

Complete the table below.

- Put a tick in the box if the bacterium **can** multiply in the presence of the given antibiotic.
- Put a cross in the box if the bacterium **cannot** multiply in the presence of the given antibiotic.

	Bacterium can multiply in the presence of		
	Ampicillin	Tetracycline	
Bacterium + plasmid with growth hormone gene			
Bacterium without a plasmid			
Bacterium with an unmodified plasmid			

(d) The figure above shows that the bacterium containing the gene for human growth hormone multiplies by cell division.

This produces a clone of bacteria.

Explain why **all** the bacteria in this clone are able to produce growth hormone.

(3) (Total 10 marks)

Figure 1

(a) Where in the mosquito does Stage 2 happen?

Draw a ring around the correct answer.

(b) What is **Organ A** in the human?

Draw a ring around the correct answer.

	live	r	pancreas	small intestine	
					(1)
(c)	What happens in the h	uman at Stag	es 5 and 6?		
					-
					-
					-

(4)

- (d) Sickle-cell anaemia is an inherited disease caused by a mutation in the haemoglobin gene.
 - (i) Genes are small pieces of DNA. The DNA in a gene consists of a sequence of bases.

Figure 2 shows part of the base sequence in the DNA of a normal haemoglobin gene and the same section in the sickle-cell gene. A, C, G and T represent the different bases.

Figure 2

Normal gene **GGACTCCTC**

Sickle-cell gene GGACACCTC

Describe how the mutation causes a change in the shape of the haemoglobin protein molecule.

(4)

(ii) Sickle-cell anaemia is caused by a recessive allele, **a**. The normal haemoglobin allele is dominant, **A**.

Use a genetic diagram to find the probability that two heterozygous parents will produce a child who is homozygous for sickle-cell anaemia.

	Probability =	
(iii)	What is the benefit of the heterozygous genotype in areas where malaria is common?	
		(1) (Total 15 marks)

Malaria is a disease caused by a microorganism carried by mosquitoes.

The microorganism is transferred to humans when adult female mosquitoes feed on human blood.

The figure below shows the life cycle of a mosquito.

© watcharapon/iStock

The World Health Organisation estimates that 3×10^8 people are infected with malaria every year.

Scientists estimate that malaria kills 2×10^6 people every year.

The people who are infected with malaria but do not die, may be seriously ill and need health care for the rest of their lives.

(a) Based on the estimated figures, what percentage of people infected with malaria die from the disease?

- (b) An internet article states:
 - 1 Mosquito larvae are at the start of the food chain for some fish.
 - 2 Adult mosquitoes provide food for bats and birds.
 - 3 Mosquitoes are also important in plant reproduction because they feed from flowers of crop plants.
 - (i) The first sentence in the article is **not** correct.

Explain why.

(ii) A company plans to produce genetically modified (GM) adult male mosquitoes. The GM mosquitoes will carry a gene from bacteria. The gene causes the death of offspring before they become adults.

Male mosquitoes do **not** feed on blood. Scientists are considering releasing millions of adult male GM mosquitoes into the wild.

Do you think scientists should release millions of male GM mosquitoes into the wild?

In your answer you should give advantages and disadvantages of releasing GM mosquitoes into the wild.

(2)

(4)

(iii) Describe the process for creating a GM mosquito.

Figure 1 shows an image of a small section of DNA.

Figure 2 shows the structure of a small section of DNA.

Figure 1Figure 2Image: Part BImage: Part BImage: Part BImage: Part BImage: Sysio/iStock/ThinkstockImage: Part B

What is Part **B**?

(a)

(b) In **Figure 1** the structure of DNA shows four different bases.

There are four different bases and they always pair up in the same pairs.

Which bases pair up together?

(c) Syndrome H is an inherited condition.

People with syndrome H do **not** produce the enzyme IDUA.

Figure 3 shows part of the gene coding for the enzyme IDUA.

							Fig	gure 3	3			
c	T	c	A	T	T	C	A	G	c	T	C	Strand J from a person without syndrome H
c	l T	C	 A	T	T	Ť	A	l G	C	1 T	C	Strand K from a person with syndrome H

Strand **K** shows a mutation in the DNA which has caused syndrome H.

The enzyme IDUA helps to break down a carbohydrate in the human body.

The enzyme IDUA produced from Strand **K** will not work.

Explain how the mutation could cause the enzyme **not** to work.

(d) A recessive allele causes syndrome H.

A heterozygous woman and a homozygous recessive man want to have a child.

Draw a Punnett square diagram to determine the probability of the child having syndrome H.

Identify any children with syndrome H.

Use the following symbols:

A = dominant allele

a = recessive allele

Probability =_____%

(5) (Total 12 marks)

5 Our understanding of genetics and inheritance has improved due to the work of many scientists.

(a) Draw **one** line from each scientist to the description of their significant work.

 Scientist
 Description of significant work

 Carried out breeding experiments on pea plants.
 Carried out breeding experiments on pea plants.

 Charles Darwin
 Wrote 'On the origin of species'.

 Alfred Russel Wallance
 Worked on plant defence systems.

 Gregor Mendel
 Worked on warning colouration in animals.

(b) In the mid-20th century the structure of DNA was discovered.

What is a section of DNA which codes for one specific protein called?

(3)

(c) **Figure 1** shows one strand of DNA.

The strand has a sequence of bases (A, C, G and T).

How many amino acids does the strand of DNA in Figure 1 code for?

Tick **one** box.

(d) Mutations of DNA cause some inherited disorders.

One inherited disorder is cystic fibrosis (CF).

A recessive allele causes CF.

Complete the genetic diagram in Figure 2.

• Identify any children with CF.

•Give the probability of any children having CF.

Each parent does not have CF.

The following symbols have been used:

- D = dominant allele for not having CF
- d = recessive allele for having CF

Probability of a child with CF = ____

(3)

(e) What is the genotype of the mother shown in Figure 2?

Tick one box.

Heterozygous

Homozygous dominant

Homozygous recessive

Mark schemes

(a) white blood cells have the same DNA / genes / chromosomes 1 or have the gene for GH allow have all the genes allow all body cells (except RBCs) have all of the genes 1 enzyme has specifically-shaped active site (b) 1 the 2 antibiotic resistance genes have different (sequence of) bases 1 only Tetracycline-resistance gene fits (active site of) enzyme or only Tetracycline-resistance gene is complementary to (active site of) enzyme 1

(c)

Ampicillin	Tetracycline
\checkmark	×
×	×
\checkmark	✓

1 mark for each correct row if no other mark, allow 1 mark for one correct column

(d)	clone produced by asexual reproduction	
	allow by 'mitosis'	

	1
all DNA / all genes are copied allow GH gene copied allow plasmid copied	
every cell receives a copy or receives every gene	1
or receives GH gene or receives plasmid	
or genetically-identical cells	1 [10]
salivary gland	1
liver	1
 any four from: merozoites released (from liver) and enter the red blood cells (some of these) turn into <u>schizonts</u> (which) burst the red blood cells releasing (more) merozoites coincides with fever attacks. <i>points credited must be in correct sequence</i> 	4
	all DNA / all genes are copied allow GH gene copied allow plasmid copied every cell receives a copy or receives every gene or receives GH gene or receives plasmid or genetically-identical cells salivary gland liver any four from: • merozoites released (from liver) and enter the red blood cells • (some of these) turn into <u>schizonts</u> • (which) burst the red blood cells • releasing (more) merozoites • coincides with fever attacks. <i>points credited must be in correct sequence</i>

			1	
		middle code of CTC is now CAC / T changed to A	1	
		so will be a different amino acid (in the chain)	1	
		(and so chain / protein will have a different shape) due to a different sequence of amino acids	I	
	(ii)	correct parental genotypes (both Aa)	1	
	(")	ellew set for Ord and the marking nainte		
		allow ect for 2^{10} and 4^{11} marking points		
		ollow alternative symbols if defined		
		anow alternative symbols in defined	1	
		correct derivation of offspring genotypes from gametes	1	
			1	
		aa identified (homozygous for) SCA		
			1	
		0.25		
		allow 25% or 1 in 4 or 1:3 or 1 / 4		
			1	
	(iii)	(Aa) less likely to get malaria (than homozygous dominant / $\Delta \Delta$)		
	(111)	allow resistance or protection if correctly qualified eq some		
		protection		
		do not accept 'immune'		
			1	
				[15]
(2)	0.67	(0/)		
(a)	0.07			
		allow 1 mark for evidence of $(2 \times 10^6) \div (3 \times 10^8)$		
		or		
		allow 1 mark for 0.0067 or 0.6	2	
			2	
(b)	(i)	idea that food chains start with plants / producers		
		allow food chains do not start with animals or larvae are consumers	1	
			1	
		Idea that these make food (for other organisms in the chain)		
		allow idea that plants / producers photosynthesise or plants /		
		allow mosquito larvae do not make food / photosynthesise or mosquito larvae do not get energy from the sun		

1

- (ii) any **four** from:
 - reasoned argument for **or** against release must refer to at least one advantage and one disadvantage. max **3** marks for either only advantages **or** only disadvantages

advantages:

- fewer mosquitos biting or spreading malaria
- fewer people get / die from malaria allow people won't get / die from malaria
- lower medical costs (for those infected or for treatment) or less healthcare needed
- better economically for developing / tropical countries.

disadvantages:

- fewer crops reproduce
 allow fewer crops pollinated
- poorer crop yield
- possible starvation (of people)
- high cost of GM production / mosquito release
- less food for bats / birds or bats / birdsdie allow disruption to food chain / ecosystem or reduction of biodiversity
- gene could 'escape' into other wildlife / species ignore into plants

(iii) any **three** from:

- gene from bacteria cut out allow allele for gene
- ref to enzymes (anywhere in process) allow at any point in process, ie in cutting or in splicing
- (gene) transferred to chromosome of mosquito allow DNA for chromosome
- at an early stage of development allow egg / embryo
- (a) phosphate

4

allow PO₄³⁻

do not allow P

- (b) A / adenine and T / thymine and C / cytosine and G / guanine do not allow U / uracil
- (c) (mutation) changes from C to T DNA code
 or
 there is a change in the three bases / triplet from CAG to TAG

1

1

4

3

1

[11]

	(mutation) changes the amino acid	
	(this could) change the protein	1
	(so it) forms a different shape / changed active site accept different tertiary structure	1
	(therefore) the enzyme no longer fits the substrate / carbohydrate	1
(d)	mother / woman's gametes correct: A a	1
	father / man's gametes correct: a a	1
	correct derivation of offspring ecf	1
	identification of child with syndrome H or genotype aa	1
	0.5	
	ecf allow 50% / 1 / 2 / 1 in 2 / 1:1	
	do not accept 1:2	1

(a)

3

[12]

(b) a gene

allow allele

1

(c) 4
1
(d) correct derivation of children's genotypes
1
identification of children with cystic fibrosis (dd)
1
0.25
allow ecf
allow ¼ / 25% / 1 in 4 / 1:3
do not accept 1:4
1