
(a) (i) In which part of an animal cell is DNA found?
\qquad
(ii) Complete the following sentence.

The letters $\mathbf{A}, \mathbf{C}, \mathbf{G}$ and \mathbf{T} in the diagram represent four different compounds called \qquad .
(iii) One strand of the DNA, in the section labelled \mathbf{X}, contains the following sequence of these compounds:

TATGGGTCTTCG

How many amino acids would this section of the DNA code for?

(iv) The section of DNA described in part (a) (iii) is a small part of a gene. The sequence of compounds $\mathbf{A}, \mathbf{C}, \mathbf{G}$ and \mathbf{T} in the gene is important.

Explain why.
\qquad
\qquad
\qquad
\qquad
(b) Read the following information about genetic engineering.

The caterpillar of the European Corn Borer moth feeds on the fruits of maize (sweet corn). There is a chemical called Bt -toxin which is poisonous to the corn borer caterpillar but not to humans.

Scientists carried out the following steps.

1. The Scientists made a bacterial plasmid to which they added two genes:

- Bt gene, which coded for production of the Bt-toxin
- kanr gene, which coded for resistance to an antibiotic called kanamycin.

2. They used this plasmid to produce genetically modified bacteria which could invade plant cells.
3. They mixed these genetically modified bacteria with pieces cut from maize leaves.
4. They placed the pieces of maize leaf on agar jelly in a Petri dish. The agar jelly contained the antibiotic, kanamycin. The kanamycin killed most of the pieces of maize leaf, but a few survived.
5. They took some cells from the surviving pieces of maize leaf and grew them in tissue culture.

The result was maize plants that now contained the $\mathbf{B t}$ gene, as well as the kanr gene, in all of their cells.
(i) What is a plasmid (Step 1)?
\qquad
\qquad
\qquad
\qquad
(ii) Why did the scientists add kanamycin to the agar jelly (Step 4)?
\qquad
\qquad
\qquad
\qquad
(iii) The scientists grew each Bt-maize plant from a single cell which contained the Bt gene.

Explain why all the cells in the Bt-maize plant contained the Bt gene.
\qquad
\qquad
\qquad
\qquad
(iv) Kanamycin is an antibiotic.

Some scientists are concerned that the gene for kanamycin resistance has been put into maize.

Suggest why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

An animal called Tiktaalik became extinct about 360 million years ago.
The photograph shows the fossilised skeleton of Tiktaalik and a model of what scientists think Tiktaalik looked like.

Image © University of Chicago, Shubin Lab. Model by TylerKeillor
(a) Scientists found only the fossilised skeleton of Tiktaalik.

Explain why.
\qquad
\qquad
\qquad
\qquad
(b) Scientists think that Tiktaalik lived mostly in water, but that it was one of the first animals to be able to move onto land.

Use evidence from the photograph to suggest why.
\qquad
\qquad
\qquad
\qquad

Peas grow in pods on pea plants.

A gardener grew four varieties of pea plants, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, in his garden.
The gardener counted the number of peas in each pod growing on each plant.
The table shows his results.

Variety	Range of number of peas in each pod	Mean number of peas in each pod
A	$2-6$	4
B	$3-7$	5
C	$3-8$	6
D	$6-8$	7

(a) Give one environmental factor and one other factor that might affect the number of peas in a pod.

Environmental factor \qquad
Other factor \qquad
(b) The gardener thinks that he will get the largest mass of peas from his garden if he grows variety \mathbf{D}.

Why is the gardener not correct?
Suggest one reason.
\qquad
\qquad
(c) It is important that carbon is cycled through living things.

After he has picked the peas, the gardener puts the dead pea plants onto a compost heap.
Over the next few months, the carbon in the carbon compounds from the pea plants is returned to the air.

Describe how.
\qquad

The diagram shows some of the cell divisions that occur during human reproduction.

(a) (i) Name the type of cell division that produces cell \mathbf{D} from cell \mathbf{B}.
\qquad
(ii) Which organ in the male body produces cell \mathbf{C} from cell \mathbf{A} ?
\qquad
(b) (i) Cells A and Beach contain 46 chromosomes.

How many chromosomes would there be in the nucleus of cell \mathbf{C} ? \square
(ii) Why is it important that cell \mathbf{C} has this number of chromosomes?
\qquad
\qquad
\qquad
\qquad

5 Eye colour is controlled by genes.
The dominant allele of the gene (b) produces brown eyes. The recessive allele (b) produces blue eyes.

A homozygous blue-eyed woman married a homozygous brown-eyed man.
All of their three children had brown eyes.
(a) (i) Complete the genetic diagram.

(ii) Give the reason why all of the children had brown eyes.
\qquad
\qquad
(b) The couple's brown-eyed son and his brown-eyed partner had five children. Two of the children had blue eyes and three of the children had brown eyes.

Use a genetic diagram to show how two of their children came to have blue eyes.
\qquad
\qquad
\qquad

6 Infections by antibiotic resistant bacteria cause many deaths.
The bar chart below shows information about the number of deaths per year in England from Methicillin-resistant Staphylococcus aureus (MRSA) and from Clostridium difficile (C.difficile) over 4 years.

(a) (i) Describe the trend for deaths caused by C. difficile.
\qquad
\qquad
\qquad
\qquad
(ii) Suggest a reason for the trend you have described in part (a)(i).

Explain your answer.
\qquad
\qquad
\qquad
\qquad
(iii) Calculate the percentage change in deaths caused by MRSA from 2009 to 2010.
\qquad
\qquad
\qquad
Percentage change in deaths caused by MRSA = \qquad \%
(iv) Numbers have not yet been published for 2011.

When the numbers are published, scientists do not expect to see such a large percentage change from 2010 to 2011 as the one you have calculated for 2009 to 2010.

Suggest one reason why.
\qquad
\qquad
(b) Before 2007 there was a rapid increase in the number of deaths caused by MRSA.

Describe how the overuse of the antibiotic methicillin led to this increase.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CRAM is an inherited condition which causes muscle breakdown.
The breakdown products enter the urine, making it dark-coloured.
The diagram below shows the inheritance of CRAM in one family.

CRAM is caused by a recessive allele, \mathbf{n}.
The allele for normal health is \mathbf{N}.
(a) (i) What is an allele?
\qquad
\qquad
(ii) What does recessive mean?
\qquad
\qquad
(iii) Give evidence from the diagram that CRAM is caused by a recessive allele.
\qquad
\qquad
(b) (i) Person 2 is homozygous for CRAM.

What does homozygous mean?
\qquad
\qquad
(ii) None of person 2's children have CRAM.

Explain why.
\qquad
\qquad
\qquad
(c) Persons 7 and 8 want to have another child.
(i) What is the probability that this child will have CRAM?

Draw a genetic diagram to explain your answer.
Probability =
(ii) To avoid having another child with CRAM, persons 7 and 8 may decide to use embryo screening.

Two ways of doing this are:

- PGD (pre-implantation genetic diagnosis)
- CVS (chorionic villus sampling).

PGD involves IVF (in vitro fertilisation) of a few eggs, then taking a cell from each embryo when it is 3 days old.

The image below shows how the cell is removed.

Rtimages/iStock/Thinkstock
The DNA in the cell can then be tested. An unaffected embryo can be implanted in the woman's uterus. The possibility of a false positive result is around 1 in 6 . The procedure costs about £6000. Affected embryos would be discarded. Extra unaffected embryos might be frozen and kept for later implantation. Alternatively, the extra embryos might be used in scientific research.

CVS involves taking a sample of blood from the placenta a few weeks into pregnancy. DNA from white blood cells can then be tested.
If an affected embryo is detected, the parents then have to decide whether to terminate the pregnancy or allow it to continue.

CVS has a 1 percent chance of giving an incorrect result and a 0.9 percent chance of causing a miscarriage. CVS costs about $£ 600$.

Evaluate the benefits of these two methods of embryo screening. You should include a conclusion to your evaluation.
\qquad
(a) (i) nucleus correct spelling only accept mitochondrion ignore genes / genetic material / chromosomes
(ii) base(s)

Accept all four correct names of bases ignore nucleotides and refs to organic / N-containing
(iii) 4
(iv) codes for sequence / order of amino acids ignore references to characteristics
codes for a (specific) protein / enzyme
or
the sequence / order of three bases / compounds / letters
codes for a specific amino acid
or
the sequence / order of 3 bases / compounds / letters
codes for the order / sequence of amino acids
(b) (i) DNA
circular / a ring or a vector / described
(ii) kills any cells not having kanr gene / so only cells with kanr gene survive hence surviving cells will also contain Bt gene / plasmid
(iii) cells divide by mitosis
ignore ref to asexual reproduction
correct spelling only
genetic information is copied / each cell receives a copy of (all) the gene(s) / all cells produced are genetically identical / form a clone
(iv) any two from:

- gene may be passed to pathogenic bacteria
- cannot then kill these pathogens with kanamycin
or
cannot treat disease with kanamycin
- may need to develop new antibiotics
- gene may get into other organisms
- outcome unpredictable

2 (a) (soft) body parts / other parts / named parts accept flesh
decayed / decomposed / rotted / eaten
or
bones do not decay / decompose / rot / get eaten
ignore disintegrated / dissolved
ignore microorganisms
(b) any one aquatic feature from: eg

- streamlined body shape
- long tail
- eyes on top of head
- scales
- fins / paddles / flippers / webbed feet ignore gills
any one terrestrial feature from:
- (front) legs / limbs / hands
- could lift front end upwards
ignore feet accept for 2 marks eg fin / flipper can be used for walking or fins like legs

3 (a) any correct named physical environmental condition, e.g. light / water / rain / temperature / minerals / nutrients / space (between plants)
ignore carbon dioxide / climate / weather / sun / pollution
genes / inheritance ignore 'variety'

OR
any correct named biotic factor e.g. predation / disease
(b) mass of crop also depends on number of pods (per plant) / size / mass of each pea ignore number of plants
(c) microorganisms / bacteria / fungi / decomposers / detritus feeders / named
decompose / rot / break down / decay / digest
ignore feed / eat
(these organisms) respire
do not allow respiration by pea (plants)
(decay / respiration / microorganisms etc) releases carbon dioxide do not allow combustion / fossilisation
(a) (i) meiosis allow mieosis
(ii) testis / testes allow testicle
(b) (i) 23
(ii) fuses / joins with cell D / with egg cell or used in fertilisation allow fuse with another cell
prevents doubling of chromosome number / restores original no. / 46 / diploid no. / normal no. / full no.
accept 23 from each parent / from each gamete
(a) (i) correct parental genotypes (man BB and woman bb)
all offspring Bb

ignore 'brown' or 'brown eyes' on diagram
(ii) they have one $\mathrm{B} /$ dominant allele / heterozygous
or

B / brown allele / dominant allele is expressed even if only on one chromosome
(b) correct parental genotypes (both Bb)
can be shown in a diagram
can be shown as gametes
correct derivation of offspring genotypes from gametes allow correct derivation from wrong gametes
bb identified as blue-eyed

6 (a) (i) decrease
rate of decrease slows
(ii) any one from:

- more use of disinfectant
allow any reasonable increase in hygiene or sterilisation precautions
- more use of hand washing
- more careful / more often cleaning of patient facilities
- raised awareness / education about hygiene

Explanation:
stops / reduces the bacteria being transferred / spreading
(iii) $800-500 / 800 \times 100=$

37.5 (\%)

correct answer with or without working gains 2 marks
1
(iv) any one from:

- numbers quite low now so hard to reduce further
- was a big campaign / much publicity (in 2009) so more people already doing it
- hygiene / cleaning now good so hard to improve
- hospitals short of money so less staff to clean
(b) mutation occurred giving resistance (to methicillin)
do not accept overuse caused mutation
resistant bacteria not able to be treated / not killed
these bacteria multiplied / reproduced / spread quickly

$$
1
$$

1
(a) (i) alternative / different / one form of a gene
or
a mutation of a gene
do not allow a type of gene
(For info: CRAM = Childhood Recurrent Acute Myoglobinuria)
(ii) not expressed if dominant / other allele is present or it is heterozygous
or
only expressed if dominant allele not present / no other allele present or it is homozygous
need two copies to be expressed / not expressed if only one copy allow 'gene' forallele
(iii) unaffected parents have an affected child
allow $\mathbf{7}$ and 8 have 10
allow skips a generation
(b) (i) has two alleles that are the same
accept (person is) nn / NN or has two recessive / dominant alleles
(ii) (all) inherit $\mathbf{N} /$ normal / dominant allele from $\mathbf{1}$ / from father ignore they are carriers
all are $\mathbf{N n}$ / none are $\mathbf{n n}$ / all are heterozygous
(c) (i) genetic diagram including:

1 gametes correct or parental genotypes correct:
\mathbf{N} and $\mathbf{n}+\mathbf{N}$ and \mathbf{n} or $\mathbf{N n}+\mathbf{N n}$
accept alternative symbols, if defined

2 derivation of offspring genotypes:
$\mathbf{N N}+\mathbf{N n}+\mathbf{N n}+\mathbf{n n}$
allow alternative if correct for parental gametes
$3 \mathbf{n n}$ identified as CRAM
accept 1 ¹/ / 25% / 1 in 4 / 1 out of 4 / 1:3

4 correct probability: 0.25
do not accept 3:1 / 1:4
(ii) any four points + conclusion:
pro PGD:
detected at earlier stage / at 3 days c.f. several weeks / before becoming pregnant
no / less chance of miscarriage c.f. CVS
does not involve abortion / less trauma / less pain / ethical comparison
higher chance of having unaffected child - eg ref to use of spare embryos provides embryos for research

pro CVS:

PGD may destroy some embryos
ethical implications of research on embryos (with PGD)
lower incidence of false positives / false results
low(er) financial cost
conclusion:
must relate to candidate's argument must have at least one point from each technique for max marks

