AQA, OCR, Edexcel GCSE

GCSE Maths

Gradients of Straight Line Graphs

Name:

M M E
 Mathsmadeeasy.co.uk

Guidance

1. Read each question carefully.
2. Don't spend too long on each question.
3. Attempt every question.
4. Always show your workings.

Revise GCSE Maths: www.MathsMadeEasy.co.uk/gcse-maths-revision/

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

1. Calculate the gradient of each of the lines below.

$$
-\frac{2}{3}
$$

$$
\frac{3}{3}=1
$$

$$
\frac{-4}{1}=-4
$$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
2. The line below shows the height a walker reaches on a long trail.

Which section of the graph shows the following?

The steepest positive gradient?
E
The shallowest positive gradient?

G

The steepest negative gradient?

H

The shallowest negative gradient?

> F

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
3. Calculate the gradients of the lines A and B below.

\qquad
\qquad
\qquad
\qquad
\qquad

Gradient of $\mathrm{A}=\frac{4}{3}$
Gradient of $\mathrm{B}=0$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
4. Calculate the gradients of lines X and Y below.

\qquad
\qquad

$$
\begin{aligned}
& \text { Gradient of } X=\frac{4}{3} \\
& \text { Gradient of } Y=\frac{7}{2}=3.5
\end{aligned}
$$

Can the gradient of Z be calculated? Give your reasoning.
The gradient can't be calculated because the change in x is 0 , and we can't divide by 0 .
5. The points $(1,5)$ and $(8,7)$ are on the same straight line.

What is the gradient of the line?

$$
\begin{aligned}
& \text { gradient }= \frac{\text { change in } y}{\text { change in } x}=\frac{7-5}{8-1}=\frac{2}{7} \\
& \quad \text { Gradient }=\frac{2}{7}
\end{aligned}
$$

The points $(3,6)$ and $(7,-2)$ are on the same straight line.
What is the gradient of the line?

$$
\text { gradient }=\frac{\text { change in } y}{\text { change in } x}=\frac{-2-6}{7-3}=\frac{-8}{4}=-2
$$

$$
\text { Gradient }=-2
$$

6. Points $\mathrm{A}(x, y)$ and B are on the same straight line.

The x-coordinate of B is three times the x-coordinate of A .
The y-coordinate of B is four times the y-coordinate of A.
What is the gradient of the line in terms of x and y ?

$$
\begin{gathered}
A(x, y) \rightarrow B(3 x, 4 y) \\
\text { gradient }=\frac{\text { change in } y}{\text { change in } x}=\frac{4 y-y}{3 x-x}=\frac{3 y}{2 x}
\end{gathered}
$$

$$
\text { Gradient }=\frac{3 y}{2 x}
$$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
7. A line D is parallel to the line C.

Two points on C are $(2,-2)$ and $(11,4)$.
$(3,2)$ is a point on D. Find another point on D.
Parallel lines have the same gradient, so Gradient of $D=$ Gradient of C

$$
\begin{gathered}
\text { Gradient of } C=\frac{\text { change in } y}{\text { change in } x}=\frac{4--2}{11-2}=\frac{6}{9}=\frac{2}{3} \\
\text { Gradient of } D=\frac{2}{3} \\
\text { Points on } D=\left(3+n, 2+\frac{2}{3} n\right)
\end{gathered}
$$

For example:

$$
\text { Point }=(\ldots 6 \ldots),(\ldots 4 \ldots)
$$

8. A and B are two perpendicular lines with equations:

$$
\begin{aligned}
& A: \quad y=m x \\
& B: \quad y=p x+9
\end{aligned}
$$

Calculate the gradients of A and B, then write down the equations of both lines.

$$
\begin{aligned}
& \text { Gradient of } a=\frac{\text { change in } y}{\text { change in } x}=\frac{3}{4} \\
& \text { Gradient of } B=\frac{\text { change in } y}{\text { change in } x}=-\frac{4}{3} \\
& \text { A: } \frac{3}{4} \\
& \text { B: }-\frac{4}{3}
\end{aligned}
$$

Describe the relationship between the gradient of two perpendicular lines.
The product of gradients for perpendicular lines is -1

