A student suspended a spring from a laboratory stand and then hung a weight from the spring.
Figure 1 shows the spring before and after the weight is added.
Figure 1

(a) Which distance gives the extension of the spring?

Tick one box.
from \mathbf{J} to \mathbf{K}

from \mathbf{K} to \mathbf{L}

from \mathbf{J} to \mathbf{L}

(b) The student used the spring, a set of weights and a ruler to investigate how the extension of the spring depended on the weight hanging from the spring.

Figure 2 shows that the ruler is in a tilted position and not upright as it should be.
Figure 2

How would leaving the ruler tilted affect the weight and extension data to be recorded by the student?

Use answers from the box to complete each sentence.
Each answer may be used once, more than once or not at all.

greater than	the same as	smaller than

The weight recorded by the student would be \qquad the actual weight.

The extension recorded by the student would be \qquad the actual extension of the spring.
(c) The student moves the ruler so that it is upright and not tilted.

The student then completed the investigation and plotted the data taken in a graph.
The student's graph is shown in Figure 3.
Figure 3

Use Figure 3 to determine the additional force needed to increase the extension of the spring from 5 cm to 15 cm .

Additional force $=$ \qquad N
(d) What can you conclude from Figure 3 about the limit of proportionality of the spring?
(e) The student repeated the investigation with three more springs, \mathbf{K}, \mathbf{L} and \mathbf{M}.

The results for these springs are given in Figure 4.
Figure 4

All three springs show the same relationship between the weight and extension.
What is that relationship?

Tick one box.
The extension increases non-linearly with the increasing weight.

The extension is inversely proportional to the weight.
\square
\square
The extension is directly proportional to the weight.
(f) Which statement, \mathbf{A}, \mathbf{B} or \mathbf{C}, should be used to complete the sentence?

Write the correct letter, A, B or \mathbf{C}, in the box below.
A a lower spring constant than
B the same spring constant as
C a greater spring constant than

From Figure 4 it can be concluded that spring \mathbf{M} has \square the other two springs.

2 The figure below shows the forces acting on a child who is balancing on a pogo stick.
The child and pogo stick are not moving.

(a) The downward force of the child on the spring is equal to the upward force of the spring on the child.

This is an example of which one of Newton's Laws of motion?

Tick one box.

First Law \square
Second Law

Third Law \square
(b) Complete the sentence.

Use an answer from the box.

elastic potential	gravitational potential	kinetic

The compressed spring stores \qquad energy.
(c) The child has a weight of 343 N .

Gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Write down the equation which links gravitational field strength, mass and weight.
\qquad
(d) Calculate the mass of the child.
\qquad
\qquad
\qquad
(e) The weight of the child causes the spring to compress elastically from a length of 30 cm to a new length of 23 cm .

Write down the equation which links compression, force and spring constant.
(f) Calculate the spring constant of the spring.

Give your answer in newtons per metre.
\qquad
\qquad
\qquad
Spring constant = \qquad N / m

A student suspended a spring from a laboratory stand and then hung a weight from the spring.
Figure 1 shows the spring before and after the weight is added.
Figure 1

(a) Measure the extension of the spring shown in Figure 1.
Extension = __ mm
(b) The student used the spring, a set of weights and a ruler to investigate how the extension of the spring depended on the weight hanging from the spring.

Before starting the investigation the student wrote the following prediction:
The extension of the spring will be directly proportional to the weight hanging from the spring.

Figure 2 shows how the student arranged the apparatus.
Figure 2

Before taking any measurements, the student adjusted the ruler to make it vertical.
Explain why adjusting the ruler was important.
\qquad
\qquad
\qquad
\qquad
(c) The student measured the extension of the spring using a range of weights.

The student's data is shown plotted as a graph in Figure 3.
Figure 3

What range of weight did the student use?
\qquad
(d) Why does the data plotted in Figure 3 support the student's prediction?
\qquad
\qquad
(e) Describe one technique that you could have used to improve the accuracy of the measurements taken by the student.
\qquad
\qquad
\qquad
\qquad
(f) The student continued the investigation by increasing the range of weights added to the spring.

All of the data is shown plotted as a graph in Figure 4.
Figure 4

At the end of the investigation, all of the weights were removed from the spring.
What can you conclude from Figure 4 about the deformation of the spring?
\qquad
\qquad
Give the reason for your conclusion.
\qquad
\qquad

Figure 1 shows an exercise device called a chest expander. The three springs are identical.
Figure 1

A person pulls outwards on the handles and does work to stretch the springs.
(a) Complete the following sentence.

When the springs are stretched \qquad energy is stored in the springs.
(b) Figure 2 shows how the extension of a single spring from the chest expander depends on the force acting on the spring.

Figure 2

(i) How can you tell, from Figure 2, that the limit of proportionality of the spring has not been exceeded?
\qquad
\qquad
(ii) Use data from Figure 2 to calculate the spring constant of the spring. Give the unit.
\qquad
\qquad
\qquad
Spring constant $=$ \qquad Unit \qquad
(iii) Three identical resistors joined in parallel in an electrical circuit share the total current in the circuit.

In a similar way, the three springs in the chest expander share the total force exerted.
By considering this similarity, use Figure 2 to determine the total force exerted on the chest expander when each spring is stretched by 0.25 m .
\qquad
\qquad
Total force $=$ \qquad N
(c) The student in Figure 3 is doing an exercise called a chin-up.

Figure 3

Each time the student does one chin-up he lifts his body 0.40 m vertically upwards.
The mass of the student is 65 kg .
The student is able to do 12 chin-ups in 60 seconds.
Calculate the power developed by the student.
Gravitational field strength $=10 \mathrm{~N} / \mathrm{kg}$
\qquad
\qquad
\qquad
\qquad
\qquad
Power = \qquad W
(Total 10 marks)
(a) When a force is applied to a spring, the spring extends by 0.12 m .

The spring has a spring constant of $25 \mathrm{~N} / \mathrm{m}$.
Calculate the force applied to the spring.
\qquad
\qquad
Force $=$ \qquad N
(b) Figure 1 shows a toy glider. To launch the glider into the air, the rubber band and glider are pulled back and then the glider is released.

Figure 1

(i) Use the correct answers from the box to complete the sentence.

chemical	elastic potential	kinetic	thermal

When the glider is released, the \qquad energy
stored in the rubber band decreases and the glider gains
\qquad energy.
(ii) Figure 2 shows how the extension of the rubber band varies with the force applied to the rubber band.

Figure 2

What can you conclude, from Figure 2, would happen to the extension of the rubber band if the force applied to the rubber band was increased to 6 N ?

The rubber band does not break.
\qquad
\qquad
\qquad
\qquad
(c) Figure $\mathbf{3}$ shows the vertical forces, \mathbf{A} and \mathbf{B}, acting on the glider when it is flying.

Figure 3

(i) What name is given to the force labelled \mathbf{B} ?

Draw a ring around the correct answer.
drag friction weight
(ii) Which one of the following describes the downward speed of the glider when force \mathbf{B} is greater than force \mathbf{A} ?

Tick (\checkmark) one box.

Downward speed increases

Downward speed is constant

Downward speed decreases

6 A student investigated the behaviour of springs. She had a box of identical springs.
(a) When a force acts on a spring, the shape of the spring changes.

The student suspended a spring from a rod by one of its loops. A force was applied to the spring by suspending a mass from it.

Figure 1 shows a spring before and after a mass had been suspended from it.
Figure 1

(i) State two ways in which the shape of the spring has changed.

1. \qquad
2. \qquad
(ii) No other masses were provided.

Explain how the student could test if the spring was behaving elastically.
\qquad
\qquad
\qquad
\qquad
(b) In a second investigation, a student took a set of measurements of force and extension. Her results are shown in Table 1.

Table 1

Force in newtons	0.0	1.0	2.0	3.0	4.0	5.0	6.0
Extension in cm	0.0	4.0		12.0	16.0	22.0	31.0

(i) Add the missing value to Table 1.

Explain why you chose this value.
\qquad
\qquad
\qquad
\qquad
(ii) During this investigation the spring exceeded its limit of proportionality.

Suggest a value of force at which this happened.
Give a reason for your answer.

$$
\text { Force }=
$$

Reason \qquad
\qquad
\qquad
(c) In a third investigation the student:

- suspended a 100 g mass from a spring
- pulled the mass down as shown in Figure 2
- released the mass so that it oscillated up and down
- measured the time for 10 complete oscillations of the mass
- repeated for masses of $200 \mathrm{~g}, 300 \mathrm{~g}$ and 400 g .

Figure 2

Her results are shown in Table 2.
Table 2

	Time for 10 complete oscillations in seconds			
Mass in g	Test 1	Test 2	Test 3	Mean
100	4.34	5.20	4.32	4.6
200	5.93	5.99	5.86	5.9
300	7.01	7.12	7.08	7.1
400	8.23	8.22	8.25	8.2

(i) Before the mass is released, the spring stores energy.

What type of energy does the spring store?
Tick (\checkmark) one box.

	Tick (\checkmark)
Elastic potential energy	
Gravitational potential energy	
Kinetic energy	

(ii) The value of time for the 100 g mass in Test 2 is anomalous.

Suggest two likely causes of this anomalous result.
Tick (\checkmark) two boxes.

	Tick (\checkmark)
Misread stopwatch	
Pulled the mass down too far	
Timed half oscillations, not complete oscillations	
Timed too few complete oscillations	
Timed too many complete oscillations	

(iii) Calculate the correct mean value of time for the 100 g mass in Table 2.
\qquad
\qquad
Mean value $=$ \qquad s
(iv) Although the raw data in Table $\mathbf{2}$ is given to 3 significant figures, the mean values are correctly given to 2 significant figures.

Suggest why.
\qquad
\qquad
\qquad
\qquad
(v) The student wanted to plot her results on a graph. She thought that four sets of results were not enough.

What extra equipment would she need to get more results?
\qquad
\qquad
\qquad
\qquad

A student investigated how the extension of a spring depends on the force applied to the spring. The diagram shows the spring before and after a force had been applied.

(a) (i) Complete the following sentence using letters, A, B, C or \mathbf{D}, from the diagram. The extension of the spring is the distance between the positions labelled
\qquad and \qquad on the metre rule.
(ii) What form of energy is stored in the stretched spring?
\qquad
(b) The results from the investigation are plotted on the following graph.

(i) The graph shows that the student has made an error throughout the investigation.

What error has the student made?
\qquad
\qquad
Give the reason for your answer.
\qquad
\qquad
(ii) The student has loaded the spring beyond its limit of proportionality.

Mark on the graph line the limit of proportionality of the spring. Label the point \mathbf{P}.
Give the reason for choosing your point \mathbf{P}.
\qquad
\qquad
\qquad
(c) The student uses a different spring as a spring balance. When the student hangs a stone from this spring, its extension is 72 mm .

The spring does not go past the limit of proportionality.
Calculate the force exerted by the stone on the spring.

spring constant $=25 \mathrm{~N} / \mathrm{m}$

Show clearly how you work out your answer.

$$
\text { Force }=\ldots \mathrm{N}
$$ force.

Applying a force to the gauge causes it to stretch.
This makes the electrical resistance of the wire change.

(a) (i) Using the correct symbols, add to the diagram to show how a battery, an ammeter and a voltmeter can be used to find the resistance of the strain gauge drawn above.
(ii) When in use, the strain gauge is always connected to a d.c. power supply, such as a battery.

How is a d.c. (direct current) power supply different from an a.c. (alternating current) power supply?
\qquad
\qquad
\qquad
(b) Before any force is applied, the unstretched gauge, correctly connected to a 3.0 V battery, has a current of 0.040 A flowing through it.
(i) Calculate the resistance of the unstretched gauge.

Show clearly how you work out your answer.
\qquad
\qquad
Resistance = \qquad Ω
(ii) Stretching the gauge causes the current flowing through the gauge to decrease.

What happens to the resistance of the gauge when it is stretched?
\qquad
\qquad
(iii) What form of energy is stored in the gauge when a force is applied and the gauge stretches?
\qquad
(a) The pictures show four objects. Each object has had its shape changed.

Which of the objects are storing elastic potential energy?
\qquad
Explain the reason for your choice or choices.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) A student makes a simple spring balance. To make a scale, the student uses a range of weights. Each weight is put onto the spring and the position of the pointer marked

The graph below shows how increasing the weight made the pointer move further.

(i) Which one of the following is the unit of weight?.

Draw a ring around your answer.

$$
\text { joule kilogram } \quad \text { newton } \quad \text { watt }
$$

(ii) What range of weights did the student use?
(iii) How far does the pointer move when 4 units of weight are on the spring?
\qquad
(iv) The student ties a stone to the spring. The spring stretches 10 cm .

What is the weight of the stone?
\qquad

10 (a) The diagram shows three similar toys. Each toy should be able to balance on a narrow rod. The arrows show the direction in which the weight of the toy acts.

Only one of the toys balances on the rod, the other two fall over. Which one of the toys is balanced? Explain the reason for your choice.
\qquad
\qquad
\qquad
\qquad
(b) The diagram shows a simple toy. Different animal shapes can be positioned so that the 50 cm rod balances horizontally.

(i) Calculate the moment exerted by the elephant shape of weight 2 N about the pivot \mathbf{P}. Show clearly how you work out your answer and give the unit.
\qquad
\qquad
Moment $=$ \qquad
(ii) Use the following relationship to calculate the weight of the monkey shape. total clockwise moment = total anticlockwise moment
\qquad
\qquad
Weight $=$ \qquad N
(c) The graph shows how the length of the spring changes as the total weight of the different animal shapes change.

Use the graph to find how much the spring extends when the elephant shape and the monkey shape are hung from the rod. Show how you get your answer.
\qquad
\qquad
\qquad cm
(a) The diagrams below show pairs of forces acting on different objects. In each case describe what happens when the forces are increased. Then describe what happens when the forces are removed.
(i)

When the forces are increased
\qquad
\qquad
When the forces are removed
\qquad
\qquad
(ii)

When the forces are increased
\qquad
\qquad
When the forces are removed
\qquad
\qquad
(iii)

When the forces are increased
\qquad
\qquad
When the forces are removed
\qquad
\qquad
(b) The graph shows the increase in length of a spring against load (force).

The length of the spring with no load was 15 cm .
Use the graph to find:
(i) The load needed to produce an increase in length of 2 cm .
(ii) The increase in length produced by a load of 2.3 N .
(iii) The length of the spring when the load was 2.3 N .
\qquad

12 The diagrams show pairs of forces acting on different objects. In each case describe what happens when the forces are increased. Then describe what happens when the forces are removed.
(a)

When the forces are increased \qquad
\qquad
When the forces are removed \qquad
\qquad
(b)

When the forces are increased \qquad
\qquad
When the forces are removed \qquad
\qquad

13 When a bungee-jump is made the jumper steps off a high platform. An elastic cord from the platform is tied to the jumper.
The diagram below shows different stages in a bungee-jump.
Forces \mathbf{A}, \mathbf{B} and \mathbf{C} are forces acting on the jumper at each stage.

(a) Name force A.
\qquad
(b) The motion of the jumper is shown in the diagrams.

By comparing forces \mathbf{A}, \mathbf{B} and \mathbf{C}, state how the motion is caused in :
(i) diagram \mathbf{X};
\qquad
(ii) diagram \mathbf{Y};
\qquad
(iii) diagram \mathbf{Z}.
\qquad
(c) The table gives results for a bungee cord when it is being stretched.

STRETCHING FORCE (N)	100	200	400	600	800
LENGTH OF CORD (m)	20	24	32	40	48

(i) Plot a graph of these results on the graph paper.

(3)
(ii) Use the graph to find the length of the cord before it was stretched.

Length \qquad m laboratory bench. The weight is pushed off the bench and bounces up and down on the elastic.

The graph shows the height of the weight above the floor plotted against time, as it bounces up and down and quickly comes to rest.

(a) Mark on the graph a point labelled \mathbf{F}, where the weight stops falling freely.
(b) Mark on the graph a point labelled \mathbf{S}, where the weight finally comes to rest.
(c) Mark two points on the graph each labelled \mathbf{M}, where the weight is momentarily stationary.

