(a) Microwaves are one type of electromagnetic wave.
(i) Which type of electromagnetic wave has a lower frequency than microwaves?
\qquad
(ii) What do all types of electromagnetic wave transfer from one place to another?
\qquad
(b) The picture shows a tennis coach using a speed gun to measure how fast the player serves the ball.

(i) The microwaves transmitted by the speed gun have a frequency of 24000000000 Hz and travel through the air at $300000000 \mathrm{~m} / \mathrm{s}$.

Calculate the wavelength of the microwaves emitted from the speed gun.
Show clearly how you work out your answer.
\qquad
\qquad
Wavelength = \qquad m
(ii) Some of the microwaves transmitted by the speed gun are absorbed by the ball. What effect will the absorbed microwaves have on the ball?
\qquad
\qquad

2 A microphone and a cathode ray oscilloscope (CRO) can be used to show the pattern of a sound wave.

Four sound wave patterns, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, are shown.
They are all drawn to the same scale.

A

B

C

D
(a) Which one of the patterns has the smallest amplitude? \qquad
(b) Which one of the patterns has the lowest frequency? \qquad
(Total 2 marks)

3
A puppy can see an image of himself in a plane mirror.

The diagram shows how the puppy can see his disc.
(a) On the diagram, use a ruler to draw a ray to show how the puppy can see the top of his ear, which is marked as \mathbf{T}.
(b) What is a plane mirror?
\qquad
\qquad
(Total 4 marks)
4 (a) Some scientists think that there is a link between using a mobile phone and some types of illness. Other scientists disagree. They say that the evidence is limited and unreliable.
(i) Suggest what scientists could do to show a link between using a mobile phone and illness.
\qquad
\qquad
(ii) How could scientists improve the reliability of the evidence?
\qquad
\qquad
(iii) Complete the following passage by drawing a ring around the word in the box that is correct.

There has been little or no experimental research into the health of children who use mobile phones.

children in scientific research.
(b) Before being sold, new mobile phones must be tested and given a SAR value.

The SAR value is a measure of the energy absorbed by the head while a mobile phone is being used.

The table gives the SAR value for three mobile phones made by different companies. To be sold in the UK, a mobile phone must have a SAR value lower than $2.0 \mathrm{~W} / \mathrm{kg}$.

Mobile phone	SAR value in W/kg
\mathbf{J}	0.18
K	0.86
\mathbf{L}	1.40

(i) All companies use the same test to measure a SAR value.

Why is using the same test important?
\qquad
\qquad
(ii) Would the companies that make the mobile phones, \mathbf{J}, \mathbf{K} and \mathbf{L}, be correct to claim that these three phones are totally safe to use?

Answer yes or no. \qquad
Give a reason for your answer.
\qquad
\qquad
(c) Devices designed to protect a mobile phone user from microwave radiation are now available.

Why is it important that these devices are tested by scientists who are not working for the company that makes the devices?
\qquad
\qquad

5 In the diagram below, a frog sits on a rock in a pond.
(a) Complete the following sentences by drawing a ring around the correct line in the box.
(i) The frog can see its image in the pond because the surface of the pond acts

(ii) Draw a ring around each of two words from the box below to describe the image in the pond.

bigger	inverted	real	smaller	upright
virtual				

(b) There is an insect underneath the rock.

Use a ruler to draw rays of light on the diagram to show how the frog uses reflection to see the insect.

Mark the direction of the rays.

6 A student uses a ray box and a semicircular glass block to investigate refraction.

(a) What is the vertical dashed line called?
\qquad
(b) Which angle, v, w, x, y or z, is the angle of refraction?
\qquad
(c) Why has refraction taken place?
\qquad
\qquad
(d) In an investigation, a student always aims the light from the ray box at point \mathbf{P}. She moves the ray box to give different values of angle v.
She records angle y for each of these values. The table shows her results.

Angle v measured in degrees	Angle \boldsymbol{y} measured in degrees
30	19
40	25
50	31
60	35
70	39
80	41

The student studies the data and comes to the following conclusion.

Angle y is directly proportional to angle v.

Her friend says that this conclusion is not correct.
(i) Use data from the table to explain why the conclusion is not correct.
\qquad
\qquad
(ii) Write a correct conclusion for the experiment.
\qquad
\qquad
(iii) Why is your conclusion only valid when angle v is between 30° and 80° ?
\qquad
\qquad

7 (a) Infra red radiation can be reflected, absorbed and transmitted by glass.

(i) What percentage of infra red is absorbed by the glass?
(ii) Complete the following sentence by drawing a ring around the correct word or phrase.

(b) Two of the following statements are true. One of the statements is false.

Tick (x^{\prime}) the boxes next to the two true statements.

All objectsabsorb infra red radiation.	
Blacksurfaces are poor emitters of infra red radiation.	
A hot objectemits more infra red than a cooler object.	

(c) The following statement is false.

Blacksurfaces are good reflectors of infra red radiation.

Change one word in this statement to make it true.
Write down your new statement.
\qquad
\qquad

8 (a) The wavelengths of four different types of electromagnetic wave, including visible light waves, are given in the table.

Type of wave	Wavelength
Visible light	0.0005 mm
A	1.1 km
B	100 mm
C	0.18 mm

Which of the waves, \mathbf{A}, \mathbf{B} or \mathbf{C}, is an infra red wave?
(b) A TV station broadcasts at 500000 kHz . The waves travel through the air at $300000000 \mathrm{~m} / \mathrm{s}$.

Calculate the wavelength of the waves broadcast by this station.
Show clearly how you work out your answer.
\qquad
\qquad
Wavelength = \qquad m
(c) What happens when a metal aerial absorbs radio waves?
\qquad
\qquad
\qquad
\qquad
(d) Stars emit all types of electromagnetic waves. Telescopes that monitor X-rays are mounted on satellites in space.

Why would an X-ray telescope based on Earth not be able to detect X-rays emitted from distant stars?
\qquad
\qquad

9 The ray diagram shows the position and size of the image, I, of an object, \mathbf{O}, formed by a lens, \mathbf{L}.

(a) What type of lens is shown in the ray diagram?
\qquad
(b) Name the point labelled \mathbf{P}.
\qquad
(c) The ray diagram has been drawn to scale.

Use the equation to calculate the magnification.

$$
\text { magnification }=\frac{\text { image height }}{\text { object height }}
$$

Show clearly how you work out your answer.
\qquad
\qquad
Magnification $=$ \qquad
(d) How can you tell from this ray diagram that the image is a real image?
\qquad
\qquad

10 (a) A student investigated the refraction of light as it passes out of a transparent plastic block.
She aimed a ray of light at point \mathbf{X}. She marked the position of the ray as it passed through the transparent plastic block and into the air.

The angle i is the angle of incidence.

(i) What is the name of angle \mathbf{r} ?
\qquad
(ii) What is the name of the dashed line?
\qquad
(b) A camera uses a lens to produce an image which falls on a light detector.

Name a light detecting device which may be used in a camera.
(c) The diagram shows the position of an image formed in a camera.

(i) What type of lens is shown in the diagram?
\qquad
(ii) Use the equation in the box to calculate the magnification.

$$
\text { magnification }=\frac{\text { image height }}{\text { object height }}
$$

Show clearly how you work out your answer.
\qquad
\qquad
Magnification = \qquad
(d) Why does the image formed in a camera have to be a real image?
\qquad
\qquad

The diagram shows a small part of the electromagnetic spectrum divided into seven sections.
The different properties of the waves in each section make them useful in different ways.

The waves in which section, $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}$ or \mathbf{G}, are:
(a) used to send a signal to a satellite in space
(b) used to communicate with a submarine under the water
\qquad
(c) used by a radio station to broadcast programmes around the world
(d) the waves with the shortest wavelength?

12 (a) Mobile phones send digital signals using electromagnetic waves.
(i) Which one of the following types of electromagnetic wave is used to carry information between masts in a mobile phone network?

Draw a ring around your answer.

light	microwave	radio

(b) Some people worry that using a mobile phone may be bad for their health.

Look at this information taken from a recent newspaper article.

- Scientists in Sweden found that the regular use of a mobile phone increases the risk of a cancerous growth between the ear and the brain.
- Some people who use mobile phones for a long time complain of headaches and tiredness. The same effect has not been noticed in laboratory tests.
- There is no reliable evidence to link using mobile phones with ill health.
- The waves from a mobile phone are not strong enough to cause long-term heat damage to cells in the body.
(i) Complete the following sentence by drawing a ring around the word in the box that is correct.

The evidence from different scientists doing the same investigation is reliable if
all the scientists get

different
identical
random

(ii) What information in the article supports the idea that mobile phones are bad for your health?
\qquad
\qquad
\qquad
\qquad
(iii) Some scientists say that using a mobile phone is totally safe.

What information in the article supports this view?
\qquad
\qquad
\qquad
\qquad

13 The diagram represents part of the electromagnetic spectrum.

(i) Visible light travels through air at $300000000 \mathrm{~m} / \mathrm{s}$.

Why can we assume that radio waves travel through air at the same speed as light?
\qquad
(ii) A radio station broadcasts at a frequency of 200 kHz .

Calculate the wavelength of the waves broadcast by this radio station. Show clearly how you work out your answer.
\qquad
\qquad

$$
\text { Wavelength }=\ldots \mathrm{m}
$$

(iii) Draw a vertical line on the diagram above to show the position of this radio wave in the electromagnetic spectrum.
(a) Satellites fitted with various telescopes orbit the Earth. These telescopes detect different types of electromagnetic radiation.

Why are telescopes that detect different types of electromagnetic waves used to observe the Universe?
\qquad
\qquad
(b) In 2005 a space telescope detected a star that exploded 13 billion years ago. The light from the star shows the biggest red-shift ever measured.
(i) What is red-shift?
\qquad
\qquad
(ii) What does the measurement of its red-shift tell scientists about this star?
\qquad
\qquad
(c) Red-shift provides evidence for the 'big bang' theory.
(i) Describe the 'big bang' theory.
\qquad
\qquad
\qquad
\qquad
(ii) Suggest what scientists should do if new evidence were found that did not support the 'big bang' theory.
\qquad
\qquad
\qquad

15 (a) The new Tetra communications system to be used by the police transmits signals using microwaves of wavelength 75 cm .

Calculate the frequency of the microwaves used by the Tetra system. Show clearly how you work out your answer.
Frequency =___ hertz
(b) Read the following extract from a newspaper and then answer the questions that follow.

Residents ofStag Hill Court, a luxuryblock of flats, are shocked at the plans to site a mobile phone mast on theroof of the flats. They oppose the mast on health grounds, quoting researchin Germany that has found apossible increase in cases of cancer around mobile phone masts.

Aspokesperson for the telecoms company said, 'The residents should not worry. The research carried out by our own scientists has found no link between illhealth and mobile phone masts'.

This has notreassured the residents, who argue that new independent research is urgentlyneeded.
(i) Explain why living near a mobile phone mast could cause ill health.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Suggest two reasons why the residents have not been reassured by the research carried out by the telecoms company.

1. \qquad
\qquad
2. \qquad
\qquad

The diagram shows four oscilloscope wave traces. The controls of the oscilloscope were the same for each wave trace.

A

C

B

D

Which one of the waves traces, A, B, C or D, has:
(i) the largest amplitude, \qquad
(ii) the lowest frequency? \qquad
(a) The diagram shows how parallel rays of light pass through a convex lens.
(i) Mark the position of the focus.

(ii) Is this a converging lens, a diverging lens, both or neither?
\qquad
(b) The diagram shows how parallel rays of light pass through a concave lens.
(i) Mark the position of the focus.

(ii) Is this a converging lens, a diverging lens, both or neither?
\qquad
(c) Complete these sentences by crossing out the two lines in each box that are wrong.

The image is $\begin{aligned} & \text { larger than } \\ & \text { smaller thant } \\ & \text { the same size as }\end{aligned}$ the object.

The image is
further from
nearer to
the lens, compared to the distance of the object from the lens.
(d) In a cinema projector, a convex lens is used to produce a magnified, real image.

(i) What does magnified mean?
\qquad
\qquad
(ii) What is a real image?
\qquad
\qquad
(e) You are in a dark room. You have a box containing some lenses. Only one of them is a converging lens.

Describe how, by just feeling the lenses, you can pick out the converging lens.
\qquad
\qquad
\qquad
\qquad

18 The drawing shows someone ironing a shirt. The top of the ironing board is covered in a shiny silver-coloured material.

Explain why the shiny silver-coloured material helps to make ironing easier.
\qquad
\qquad
\qquad
\qquad

19 (a) The diagram shows a lens used as a magnifying glass. The position of the eye is shown and the size and position of an object standing at point \mathbf{O}.
(i) What type of lens is shown in the diagram?
\qquad
(ii) Two points are marked as \mathbf{F}. What are these points?
\qquad
(iii) What is the name of the straight line which goes through the point \mathbf{F}, through the point \mathbf{L} at the centre of the lens, and through the point \mathbf{F} on the other side?
\qquad
(iv) On the diagram, use a ruler to construct accurately the position of the image. You should show how you construct your ray diagram and how light appears to come from this image to enter the eye.

(v) The image is virtual. What is a virtual image?
\qquad
\qquad
(1)
(b) The lens shown in the diagram in part (a)(iv) can be used in a camera to produce a real image.

Explain why a real image must be produced in a camera and how the object and the lens are positioned to produce a real image which is smaller than the object.

Do not draw a ray diagram as part of your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The person who will take the X-ray and the person holding the horse are wearing special aprons. These aprons have a lead lining.

Explain why the lead lining is important.
To gain full marks in this question you should write your ideas in good English.
Put them into a sensible order and use the correct scientific words.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

21 (a) The diagram shows two parallel rays of light, a lens and its axis.
(i) Complete the diagram to show what happens to the rays.

(ii) Name the point where the rays come together.
\qquad
(iii) What word can be used to describe this type of lens?
\qquad
(b) The diagram shows two parallel rays of light, a lens and its axis.

(i) Which point $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ or \mathbf{E} shows the focal point for this diagram?

Point \qquad
(ii) Explain your answer to part (b)(i).
\qquad
\qquad
(iii) What word can be used to describe this type of lens?
\qquad
(c) Complete the following three sentences by crossing out the two lines in each box which are wrong

In a camera a converging lens is used to produce an image on a \begin{tabular}{l|l|}

\hline | film |
| :--- |
| lens |
| screen | \\

\hline
\end{tabular}

The image is $\begin{aligned} & \text { larger than } \\ & \text { smaller than } \\ & \text { the same size as }\end{aligned} \quad$ the object.

Compared to the distance of the image from the lens, the object is

| further away from
 nearer to
 the same distance from |
| :--- | the lens.

(d) Explain the difference between a real image and a virtual image.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(a) The diagram shows a wave pattern.

Which letter, L, M or \mathbf{N} shows:
(i) the wavelength? \qquad
(ii) the amplitude? \qquad
(c) Describe how you could show that visible light travels in straight lines. You may wish to draw a diagram to help explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad

23 All radio waves travel at $300000000 \mathrm{~m} / \mathrm{s}$ in air.
(i) Give the equation that links the frequency, speed and wavelength of a wave.
\qquad
(ii) Calculate the wavelength, in metres, of a radio wave which is broadcast at a frequency of 909 kHz . Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Wavelength = \qquad metres
(a) The diagram represents the electromagnetic spectrum. Four of the waves have not been named. Draw lines to join each of the waves to its correct position in the electromagnetic spectrum. One has been done for you.

(b) Complete the following sentence by choosing the correct answer and crossing out in the box the two lines which are wrong.

The speed of radio waves through a vacuum is $\begin{gathered}\text { faster than } \\ \text { the same as } \\ \text { slower than }\end{gathered}$ the speed of
light through a vacuum.
(c) The diagram shows an X-ray photograph of a broken leg.

Bones show up white on the photographic film. Explain why.
\qquad
\qquad
\qquad

25 (a) A swimming pool has a wave making machine. The diagram shows the water wave pattern for 3 seconds.

(i) How many water waves are shown in the diagram?
\qquad
(ii) What is the frequency of the water waves?
\qquad
(iii) Which one of the units below is used to measure frequency? Underline your answer. hertz joule watt
(b) The diagram shows the direction of the waves across the pool. The waves reflect off the side of the pool.

Draw a line on the diagram to show the direction of the waves after they hit the side of the pool.
(c) The swimming pool is used to test a model of an electricity generator. The waves make the floating generator move up and down. This energy is transferred to electricity.

(i) In the following sentence, cross out the two lines that are wrong in the box.

The diagram shoes that the amplitude of the waves | gets larger |
| :--- |
| stays the same |
| gets smaller | as the waves

pass the generator.
(ii) What type of energy does the generator transfer to electricity?
\qquad
(iii) Energy from ocean waves could be used to generate electricity. Would this be a renewable or non-renewable energy resource?
\qquad

26 Microwaves are used to transmit signals to the satellite. The microwaves have a wavelength of 0.6 metres (m) and travel through space at a speed of 300000000 metres per second (m / s).
(i) Write down the equation which links frequency, wavelength and wave speed.
\qquad
(ii) Calculate the frequency of the microwaves. Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
Frequency $=$ \qquad

The vibration caused by a P wave travelling at $7.6 \mathrm{~km} / \mathrm{s}$ has been recorded on a seismic chart.

(i) How many waves are produced in one second?
\qquad
(ii) Write down the equation which links frequency, wavelength and wave speed.
\qquad
(iii) Calculate the wavelength of the P wave. Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
Wavelength $=$ \qquad

After a person is injured a doctor will sometimes ask for a photograph to be taken of the patient's bone structure, e.g. in the case of a suspected broken arm.
(i) Which type of electromagnetic radiation would be used to take the photograph?
\qquad
(ii) Describe the properties of this radiation which enable it to be used to photograph bone structure.
\qquad
\qquad
\qquad
\qquad

29 (a) The diagrams below show rays of light striking a mirror and a perspex block.

Complete the paths of the three rays of light on the diagrams to show the rays leaving the mirror and the perspex block.
(b) The diagram below shows a beam of light striking a perspex block.

(i) Continue the paths of the rays AB and CD inside the perspex block.
(ii) Draw the wavefronts of the beam of light in the perspex.
(iii) Explain why the beam behaves in the way you have shown.
\qquad
\qquad
\qquad
(c) The diagram below shows a ray of light striking a perspex-air surface from inside the perspex. The critical angle is 45°.

Draw the path of the ray after it reaches the perspex-air boundary.

The diagram shows the image IC formed by a lens, of an object OB a long way from it. The points F mark the focal points of the lens.

(a) Describe, either by writing below or drawing on the diagram, how the size and position of the image changes:
(i) when the object OB is moved towards the focal point F .
\qquad
\qquad
(ii) when the object OB is moved past F to a point nearer the lens than the focal point.
\qquad
\qquad
(b) Explain how a converging lens in a camera is used to produce sharp images on the film when the object is a long distance away from the camera, and when it is close to the camera.
\qquad
\qquad
\qquad
\qquad
\qquad
(a) The diagrams show rays of light. Each ray strikes a surface of a glass block.

(i) On the diagram draw the path of each ray through the glass block and out into the air again.
(ii) Label another angle on the diagram which is equal to the angle marked \mathbf{X}. Label this angle \mathbf{Y}.
(b) The diagrams show two beakers. Both beakers have a drawing pin inside as shown.

The first beaker is empty. The eye cannot see the drawing pin.
The second beaker is full of water and the eye can see the drawing pin.

Explain how the eye is able to see the drawing pin in the second beaker. You may add to the diagram if it helps your answer.
\qquad
\qquad
\qquad

32 Lenses are used in many optical devices.
Complete the table below about the images formed by some optical devices.

OPTICAL DEVICE	NATURE OF IMAGE	SIZE OF IMAGE	POSITION OF IMAGE
Eye	real		
Projector		Magnified	
camera			Closer to lens than the object

(Total 6 marks)
33 Radio waves, ultra-violet, visible light and X-rays are all types of electromagnetic radiation.
(a) Choose wavelengths from the list below to complete the table.
$3 \times 10^{-8} \mathrm{~m} 1 \times 10^{-11} \mathrm{~m} \quad 5 \times 10^{-7} \mathrm{~m} \quad 1500 \mathrm{~m}$

TYPE OF RADIATION	WAVELENGTH (m)
Radio waves	
Ultra-violet	
Visible light	
X-rays	

(b) Microwaves are another type of electromagnetic radiation.

Calculate the frequency of microwaves of wavelength 3 cm .
(The velocity of electromagnetic waves is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.)
\qquad
\qquad
\qquad
\qquad

34 An aquarium contains only one fish. But if you look at the comer of the aquarium, there seem to be two fish.

The diagram below shows the top of the aquarium.
Two light waves have been drawn from the fish.
(a) Complete the diagram to show how the light waves reach the eye.

(b) Complete each sentence by using the correct words from the box.

colour diffraction longitudinal reflection		
refraction	speed	transverse

When the light waves pass from glass into the air they change \qquad
This causes a change in direction called \qquad
Light waves are \qquad waves.

35 The diagram shows a wave travelling along a rope.

(a) On the diagram:
(i) show the wavelength and label it \mathbf{W};
(ii) show the amplitude and label it A.
(b) The wavelength of the wave is 0.1 m . Its frequency is 2 Hz .

Calculate the speed of the wave. Show clearly how you work out your answer and give the unit.
\qquad
\qquad
\qquad
Speed of wave \qquad

Suggest how this method cleans the watch.
\qquad
\qquad
\qquad
\qquad
(Total 2 marks)
(a) The diagram shows what happens to a ray of light as it travels through a glass prism.

To gain full marks for this question you should write your ideas in good English. Put them into a sensible order and use the correct scientific words.

Use the words in the box to help you to explain why the ray behaves in this way.
angle critical normal
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Periscopes can be used to look over the heads of other people.

A periscope contains two glass prisms.
Complete the diagram to show the ray of light reaching the person's eye.

(3)
(Total 6 marks)
Microwave ovens can be used to heat many types of food.

(i) Describe, in as much detail as you can, how microwaves heat food.
\qquad
\qquad
\qquad
\qquad
(ii) Microwaves have a frequency of 10000 million Hz . Their wavelength is 0.03 m .

Calculate the speed of microwaves.
Show clearly how you work out your answer.
\qquad
\qquad
\qquad
Speed of microwaves \qquad m / s

39 The diagram shows oscilloscope traces of four waves, A, B, C and D. All four waves are drawn to the same scale.
$A \sqrt{A} \sqrt{ } \sqrt{ }$

$\square \ggg>$
Which wave has:
(a) the longest wavelength; \qquad
(b) the greatest amplitude; \qquad
(c) the highest frequency? \qquad

40 (a) The diagram shows two mirrors at right angles to each other. A ray of light shines onto one mirror as shown.

Carefully draw the path of the ray which is reflected from both mirrors.
Draw an arrow on the ray to show the direction of the light.

(b) Light can also be made to change direction as it passes into and out from a block of glass. Complete the ray diagram below.

41 Some students made a small hand-turned a.c. generator, similar to a bicycle dynamo. They connected it to the Y plates of a cathode ray oscilloscope, CRO, and turned the generator slowly. The trace on the CRO looked like this:

They then turned the generator faster and the trace looked like this:

(a) Why did the trace on the CRO show:
(i) an increase in frequency;
\qquad
(ii) a decrease in wavelength;
\qquad
(iii) an increase in amplitude?
\qquad
(b) One way to alter the output from the generator is to change the speed of turning. State two other ways to adapt parts of the generator to increase its output.
\qquad
\qquad

42 (a) On the wave drawn below, mark the amplitude and wavelength.

(b) A wave is said to have a frequency of 25 Hz .

Explain what the term frequency means.
\qquad
\qquad
\qquad
(c) From the electromagnetic spectrum, give the name and use of a radiation of lower frequency than light.

Name \qquad
Use \qquad

The diagram shows a glass prism.

(i) Explain why refraction has not occurred at point \mathbf{X}.
\qquad
\qquad
(ii) (A) Give the full name for the process which has occurred at point \mathbf{Y}.
\qquad
(B) Explain why this process has occurred.
\qquad
\qquad
\qquad

44 (i) Use the words frequency, wavelength and wave speed to write an equation which shows the relationship between them.
\qquad
(ii) Calculate the speed of a sound wave with a frequency of 250 Hz and a wavelength of 1.3 m .

Show how you get to your answer and give the unit.
\qquad
\qquad
Speed $=$ \qquad

TELESCOPE

The microscope and the telescope made from the two lenses are similar in some ways but different in others.

Complete the table to show these similarities and differences.

	Similarities	Differences
What the micro- scope and telescope are used for		
The job done by the eye-piece		
How the final image compares with the original object		

\qquad
\qquad
\qquad
\qquad
\qquad
(Total 4 marks)
The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum.

X-rays, which have frequencies in the range $10^{18}-10^{21} \mathrm{~Hz}$ are already marked on the diagram.

$\underset{(\mathrm{Hz})}{\text { Frequency }}$ Type of Radiationn | Wavelength |
| :---: |
| (m) |

Complete the diagram by adding the following:
(a) gamma radiation, which has shorter wavelengths than X-rays;
(b) radio waves which have wavelengths longer than 0.1 m ;
(c) the visible spectrum which has wavelengths from 400 nm (violet) to 700 nm (red);
(d) ultraviolet radiation (i.e. radiation with a higher frequency than violet light);
(e) microwaves which have a shorter wavelength than radio waves and infrared radiation which has a higher frequency than microwaves;
(f) an FM radio programme on 92 MHz . (Show this with an arrow ${ }^{\circledR}$)
(Total 7 marks)

48 A man is walking along the bank of a river.
He sees a fish which seems to be at X.

(a) Show, on the diagram, where the fish really is.

Complete the ray of light which goes from the fish into the man's eye.
(b) Complete the sentence.

The ray of light is \qquad as it passes from the water into the air.

49 The diagram shows the oscilloscope traces of two different sounds P and Q. The oscilloscope setting is exactly the same in both cases.

P and Q sound different.
Write down two differences in the way they sound.
Explain your answers as fully as you can.

1. \qquad
\qquad
\qquad
2. \qquad
\qquad
\qquad

The diagram shows some of the kinds of waves in the electromagnetic spectrum. Choose words from this list to complete the empty boxes on the diagram.
alpha radiation infrared radiation radio waves X-rays

Shortest wavelength				Longest wavelength
gamma radiation	ultraviolet radiation	light	microwaves	

(a) Complete the diagram to show what happens to the ray of light when it comes out of the glass.
(b) Explain why this happens to the ray of light.
\qquad
(Total 4 marks)
52
The diagram shows some waves travelling along a rope.

(a) Show on the diagram
(i) the wavelength of one of the waves
(ii) the amplitude of one of the waves
(b) The waves shown on the diagram were produced in two seconds.

What is the frequency of the waves?
\qquad

