Page 2 of 45

Mark schemes

1
(a) current that is always in the same direction
(b) total resistance $=30(\Omega)$
$V=0.4 \times 30$

12 (V)
allow $12(V)$ with no working shown for 3 marks an answer of $8(V)$ or $4(V)$ gains 2 marks only
(c) $\mathrm{P}=0.4 \times 12=4.8$

5 (W)
allow 5 (W) with no working shown for 2 marks allow 4.8 (W) with no working shown for 1 mark

2 (a) he may receive an electric shock
or
he may be electrocuted
if he touches the live wire
(b) $10690=I \times 230$
$I=10690 / 230$
46.478(260) (A)
allow 46 (A) with no working shown for 4 marks
(c) cost is higher
more energy is used (per second)
46

3 (a) (because the) potential of the live wire is 230 V
(and the) potential of the electrician is 0 V
(so there is a) large potential difference between live wire and electrician
charge / current passes through his body
allow voltage for potential difference
(b) diameter between 3.50 and 3.55 (mm)
allow correct use of value of cross-sectional area of 9.5 to 9.9
$\left(\mathrm{mm}^{2}\right)$ with no final answer given for $\mathbf{1}$ mark
(c) $18000=I \times 300$
$I=18000 / 300=60$
$13800=\left(60^{2}\right) \times R$
$R=13800 / 60^{2}$
$3.83(\Omega)$
allow $3.83(\Omega)$ with no working shown for 5 marks
answer may also be correctly calculated using $P=I V$ and $V=I R$ if 230 V is used.
(a) any one from:

- high cost of installing overhead power lines or underground cables or pylons
- high cost as (very) long cables needed
- amount of electricity required is too low
allow not enough (surplus) electricity would be generated
(b) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should apply a 'best-fit' approach to the marking.

Level 3 (5-6 marks):

clear comparison of advantages and disadvantages of each method
Level 2 (3-4 marks):
at least one advantage and one disadvantage is stated for one method and a different advantage or disadvantage is stated for the other method

Level 1 (1-2 marks):

at least one advantage or one disadvantage of either method

Level 0 (0 marks):

No relevant information

examples of physics points made in the response

Advantages of both methods:

- both renewable sources of energy
- both have no fuel (cost)
- both have very small (allow 'no') running costs
- no carbon dioxide produced
accept carbon neutral
accept no greenhouse gases
accept doesn't contribute to global warming

Advantages of wind:

- higher average power output
produces more energy is insufficient

Advantages of hydroelectric:

- constant / reliable power (output)
- lower (installation) cost

Disadvantages of wind:

- higher (installation) cost
- variable / unreliable power output
- (may) kill birds / bats

Disadvantages of hydroelectric:

- lower power output
- (may) kill fish or (may) damage habitats
- more difficult to set up (within river)

Disadvantages of both methods:

- (may be) noisy
- visual pollution
ignore payback time unless no other relevant points made ignore time to build for both
(a) 4
(b) (i) 2
allow 1 mark for correct substitution ie

$$
I=\frac{100}{20}
$$

provided no subsequent step
(ii) 5
allow 1 mark for correct substitution ie

$$
V=\frac{100}{20}
$$

provided no subsequent step

6 (a) field
correct order only
current
force
accept motion
accept thrust
(b) (i) arrow pointing vertically downwards
(ii) increase current / p.d.
accept voltage for p.d.
(ii) increase current / p.d.
accept voltage for p.d.
increase strength of magnetic field accept move poles closer together
reverse battery / current
(c) (i) 1.5 or 150% efficiency $=120 / 80(\times 100)$
gains 1 mark
an answer of 1.5% or 150
gains 1 mark
(ii) efficiency greater than 100\%
or
output is greater than input
or
output should be 40 (W)
(iii) recorded time much shorter than actual time accept timer started too late accept timer stopped too soon

7 (a) increases accept reaches highest value do not accept increases and decreases
(b) (i) increases
(ii) increases
(c) 18
allow 1 mark for correct substitution i.e. 12×1.5 provided no subsequent step
watt
accept W
answer may be indicated in the list
(a) (i) 1.7
(ii) 51
or
$30 \times$ their (i) correctly calculated

$$
\text { allow } 1 \text { mark for correct substitution i.e. } 1.7=\underline{3}
$$

or their $(i)=\underline{Q}$
30
(b) ions vibrate faster
or
ions vibrate with a bigger amplitude
accept atoms for ions throughout
accept ions gain energy
accept ions vibrate more
ions start to vibrate is insufficient
electrons collide more (frequently) with the ions
or
(drift) velocity of electrons decreases
electrons start to collide is insufficient
there are more collisions is insufficient, unless both electrons and ions are implied

9 (a) solid
(b) decreased correct order only
increased
(c) (i) A
reason only scores if A chosen
uses least / less energy (in 1 year)
a comparison is required
accept uses least power
accept uses least kWh
(ii) greater the volume the greater the energy it uses (in 1 year)
(iii) a very small number sampled
accept only tested 3
accept insufficient evidence / data
allow not all fridges have the same efficiency or a correct description implying different efficiencies
only tested each fridge once is insufficient
there are lots of different makes is insufficient

10 (a) advantage any one from:

- produce no / little greenhouse gases / carbon dioxide allow produces no / little polluting gases allow doesn't contribute to global warming / climate change allow produce no acid rain / sulphur dioxide reference to atmospheric pollution is insufficient produce no harmful gases is insufficient
- high(er) energy density in fuel
accept one nuclear power station produces as much power as several gas power stations
nuclear power stations can supply a lot of or more energy is insufficient
- long(er) operating life allow saves using reserves of fossil fuels or gas
disadvantage
any one from:
- produce (long term) radioactive waste
accept waste is toxic
accept nuclear for radioactive
- accidents at nuclear power stations may have far reaching or long term consequences
- high(er) decommissioning costs
accept high(er) building costs
- long(er) start up time
(b) (i) $12000(\mathrm{kWh})$
allow 1 mark for correct substitution eg
2000×6
or
2000000×6
or
12000000
1000
an answer of 12000000 scores 1 mark
(ii) any idea of unreliability, eg
- wind is unreliable
reference to weather alone is insufficient
- shut down if wind too strong / weak
- wind is variable
(c) any one from:
- cannot be seen
- no hazard to (low flying) aircraft / helicopters
- unlikely to be or not damaged / affected by (severe) weather
unlikely to be damaged is insufficient
- (normally) no / reduced shock hazard
safer is insufficient
less maintenance is insufficient
installed in urban areas is insufficient
(a) water moves (from a higher level to a lower level)
rotating a turbine to turn a generator
accept driving or turning or spinning for rotating
moving is insufficient
transferring KE to electrical energy
transferring GPE to electrical energy gains 1 mark of the $\mathbf{2}$ marks available for energy transfers
(b) (TVs in stand-by) use electricity accept power / energy
generating electricity (from fossil fuels) produces CO_{2}
accept greenhouse gas
accept sulfur dioxide
$\left(\mathrm{CO}_{2}\right)$ contributes to global warming accept climate change for global warming accept greenhouse effect if CO_{2} given accept acid rain if linked to sulfur dioxide
(c) a factor other than scientific is given, eg economic, political or legal personal choice is insufficient

12 (a) air near freezer compartment is cooled or loses energy accept air at the top is cold
cool air is (more) dense or particles close(r) together (than warmer air) do not allow the particles get smaller / condense
so (cooler) air falls
air (at bottom) is displaced / moves upwards / rises
do not allow heat rises
accept warm air (at the bottom) rises
(b) if volume is doubled, energy use is not doubled
or
volume \div energy not a constant ratio
(c) accept suitable examples, eg
advantage:

- reduces emissions into atmosphere
- lower input power or uses less energy or wastes less energy
- costs less to run
cost of buying or installing new fridge is insufficient ignore reference to size of fridge
disadvantage:
- land fill
- energy waste in production
- cost or difficulty of disposal
- transport costs

13 (a) (i) 5.88 (watts)
an answer of 5.9 scores 2 marks
allow 1 mark for correct substitution ie
$0.42=\frac{\text { power out }}{14}$
allow 1 mark for an answer of 0.0588 or 0.059
(ii) 8.12
allow 14 - their (a)(i) correctly calculated
(b) (i) input power / energy would be (much) less (reducing cost of running)
accept the converse
electricity is insufficient
(also) produce less waste energy / power
accept 'heat' for waste energy
(as the waste energy / power) increases temperature of the cabinet
so cooler on for less time
(ii) line graph
need to get both parts correct
accept scattergram or scatter graph
both variables are continuous
allow the data is continuous
(c) number of bulbs used-halogen=24 (LED=1)
total cost of LED $=£ 30+£ 67.20=£ 97.20$
accept a comparison of buying costs of halogen $£ 36$ and LED $£ 30$
total cost of halogen $=24 \times £ 1.50+24 \times £ 16.00=£ 420$
or
buying cost of halogen is $£ 36$ and operating cost is $£ 384$
accept a comparison of operating costs of halogen £384 and LED £67.20
allow for $\mathbf{3}$ marks the difference in total cost is $£ 322.80$ if the number 24 has not been credited
statement based on correct calculations that overall LED is cheaper must be both buying and operating costs
an alternative way of answering is in terms of cost per hour:
buying cost per hour for $\operatorname{LED}\left(\frac{£ 30.00}{48000}\right)=0.0625 p / £ 0.000625$
buying cost per hour for halogen $=\left(\frac{£ 1.50}{2000}\right)=0.075 \mathrm{p} / £ 0.00075$ a calculation of both buying costs scores 1 mark
operating cost per hour for LED $=\left(\frac{£ 67.20}{48000}\right)=0.14 \mathrm{p} / £ 0.0014$
operating cost per hour for halogen $=\left(\frac{£ 16.00}{2000}\right)=0.8 p / £ 0.008$ a calculation of both operating costs scores 1 mark
all calculations show a correct unit
all units correct scores 1 mark
statement based on correct calculations of both buying and operating costs, that overall LED is cheaper
correct statement scores 1 mark
(a) water heated by radiation (from the Sun)
accept IR / energy for radiation
water used to heat buildings / provide hot water
allow for $\mathbf{1}$ mark heat from the Sun heats water if no other marks given
references to photovoltaic cells / electricity scores 0 marks
1
(b) 2 (minutes)
$1.4 \times 10^{3}=\frac{168 \times 10^{3}}{t}$
gains 1 mark
calculation of time of 120 (seconds) scores 2 marks
(c) (i) $150(\mathrm{kWh})$
(ii) $£ 60(.00)$ or $6000(\mathrm{p})$
an answer of $£ 6000$ gains 1 mark
allow 1 mark for $150 \times 0.4(0) 150 \times 40$
allow ecf from (c)(i)
(iii) 25 (years)
an answer of $6000 / 240$
or
6000 / their (c)(ii) $\times 4$
gains 2 marks
an answer of 6000 / 60
or
6000 / their (c)(ii) gains 1 mark, ignore any other multiplier of (c)(ii)
(iv) any one from:

- will get $£ 240$ per year accept value consistent with calculated value in (c)(iii)
- amount of light is constant throughout the year
- price per unit stays the same
- condition of cells does not deteriorate
(d) any one from:
- angle of tilt of cells
- cloud cover
- season / shade by trees
- amount of dirt
(a) (i) temperature (increase) and time switched on are directly proportional accept the idea of equal increases in time giving equal increases in temperature
answers such as:
- as time increases, temperature increases
- positive correlation
- linear relationship
- temperature and time are proportional
score 1 mark
(ii) any one from:
"it" refers to the metal block
- energy transfer (from the block) to the surroundings
accept lost for transfer
accept air for surroundings
- (some) energy used to warm the heater / thermometer (itself) accept takes time for heater to warm up
- (metal) block is not insulated
(iii) 15000
allow 1 mark for correct substitution, ie 50×300 provided no subsequent step shown
(b) lead
reason only scores if lead is chosen
needs least energy to raise temperature by $1^{\circ} \mathrm{C}$ accept needs less energy to heat it (by the same amount) lowest specific heat capacity is insufficient
(a) (i) to obtain a range of p.d. values
accept increase / decrease current / p.d. / voltage / resistance
accept to change / control the current / p.d. / voltage / resistance
to provide resistance is insufficient
a variable resistor is insufficient
do not accept electricity for current
(ii) temperature of the bulb increases
accept bulb gets hot(ter)
accept answers correctly
expressed in terms of collisions between (free) electrons and ions / atoms
bulb gets brighter is insufficient

> allow 1 mark for correct substitution, ie 12×3 provided no subsequent step shown
watt(s) / W
accept joules per second / J/s
do not accept w

1
(b) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information in the Marking guidance, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is a basic comparison of either a cost aspect or an energy efficiency aspect.

Level 2 (3-4 marks)

There is a clear comparison of either the cost aspect or energy efficiency aspect OR a basic comparison of both cost and energy efficiency aspects.

Level 3 (5-6 marks)

There is a detailed comparison of both the cost aspect and the energy efficiency aspect.

For full marks the comparisons made should support a conclusion as to which type of bulb is preferable.

Examples of the points made in the response:

cost

- halogen are cheaper to buy
simply giving cost figures is insufficient
- 6 halogen lamps cost the same as one LED
- LEDs last longer
- need to buy 18 / more halogen lamps to last the same time as one LED
- 18 halogens cost $£ 35.10$
- costs more to run a halogen than LED
- LED has lower maintenance cost (where many used, eg large departmental store lighting)

energy efficiency

- LED works using a smaller current
- LED wastes less energy
- LEDs are more efficient
- LED is 22% more energy efficient
- LED produces less heat
- LED requires smaller input (power) for same output (power)

17 (a) iron
hairdryer
kettle
1
answers can be in any order
(b) (i) \mathbf{Y}
(ii) bar drawn with any height greater than \mathbf{Y} ignore width of bar
(c) (bigger volume) takes more time (to boil) accept explanation using data from graph
(so) more energy transferred
do not accept electricity for energy
(and) this costs more money ignore reference to cost of water wasting more money because heating more water than needed is insufficient

18 (a) $£ 16.50$
allow 1 mark for correct substitution ie 110×15
an answer of 1650 gains both marks
an answer of 43.80 gains both marks
allow 1 mark for 292×15
(b) 292
allow 1 mark for correctly using the reading 53490 ie 53782-53490
accept $£ 43.80$ for both marks

19 (a) (i) kinetic
do not accept movement
(ii) thermal sound
accept heat for thermal do not accept noise for sound both answers required in either order
(b) transferred to surroundings / surrounding molecules / atmosphere 'it escapes' is insufficient
or
becomes dissipated / spread out
accept warms the surroundings
accept degraded / diluted
accept a correct description for surroundings eg to the washing machine
do not accept transformed into heat on its own
(c) (i) $3(.0 \mathrm{p})$
allow 1 mark for correct substitution of correct values ie 0.2×15 allow 1 mark for calculating cost at $40^{\circ} \mathrm{C}$ (16.5p)
or
cost at $30^{\circ} \mathrm{C}$ (13.5p)
(ii) any two from:

- less electricity needed
ignore answers in terms of the washing machine releasing less energy
an answer in terms of the washing machine releasing CO_{2} negates
mark
do not accept less energy is produced
- fewer power stations needed
- less fuel is burned
accept a correctly named fuel
do not accept less fuel is needed

20 (a) (i) conduction
convection
correct order only
(ii) to keep the ceramic bricks hot for a longer time
(b) (i) $E=P \times t$
18.2
allow 1 mark for correct substitution ie 2.6×7 provided that no subsequent step is shown
(ii) 91 (p)
or their (b)(i) $\times 5$ correctly calculated
accept $£ 0.91$
do not accept 0.91 without $£$ sign
(c) $E=m \times c \times \theta$

2250000
allow 1 mark for correct substitution ie $120 \times 750 \times 25$ provided that no subsequent step is shown
answers 2250 kJ or 2.25 MJ gain both marks

21 (a) $E=P \times t$
91 (p)
an answer $£ 0.91$ gains 3 marks
an answer 0.91 gains 2 marks
allow 2 marks for energy transferred $=18.2$ (kWh)
or
substitution into 2 equations combined, ie $2.6 \times 7 \times 5$
allow 1 mark for correct substitution into $E=P \times t$, ie $E=2.6 \times 7$
or
allow 1 mark for multiplying and correctly calculating an incorrect energy transfer value by 5
(b) answers should be in terms of supply exceeding demand accept there is a surplus / excess of electricity (at night)
(c) reduce (rate of) energy transfer (from ceramic bricks)
accept heat for energy
do not accept no energy / heat escapes
do not accept answers in terms of lost / losing heat if this implies heat is wasted energy
so keeping the (ceramic) bricks hot for longer
accept increase time that energy is transferred to the room
accept keep room warm for longer
or
to stop the casing getting too hot
accept so you do not get burnt (on the casing)
(d) $E=m \times c \times \theta$

120
allow 1 mark for correct substitution ie $9000000=m \times 750 \times 100$

2
[8]

22 (a) (i) efficiency $=\frac{\text { useful energy out }}{\text { total energy in }} \times 100 \%$)
1.6 (W)
allow 1 mark for correct substitution ie $0.2 / \frac{20}{100}=\frac{\text { output }}{8}$
2
(ii)
efficiency $=\frac{\text { useful energy out }(\times 100 \%)}{\text { total energy in }}$
32 (\%) / 0.32
or
their (a)(i) $\div 5$ correctly calculated
ignore any units
1
(b) (i) any two from:

- comparison over same period of time of relative numbers of bulbs required eg over 50000 hours 5 CFL's required to 1 LED accept an LED lasts 5 times longer
- link number of bulbs to cost eg 5 CFL's cheaper than 1 LED an answer in terms of over a period of 50000 hours CFLs cost $£ 15.50$ (to buy), LED costs $£ 29.85$ (to buy) so CFLs are cheaper scores both marks
an answer in terms of the cost per hour (of lifetime) being cheaper for CFL scores 1 mark if then correctly calculated scores both marks
- over the same period of time LEDs cost less to operate (than CFLs)
(ii) any one from:
- price of LED bulbs will drop do not accept they become cheaper
- less electricity needs to be generated accept we will use less electricity
- less CO_{2} produced
- fewer chips needed (for each LED bulb)
- fewer bulbs required (for same brightness / light)
- less energy wasted do not accept electricity for energy
(ii) hairdryer and sandwich toaster
both required either order but no others
(b) (i) 1.2
allow 1 mark for correct substitution
ie 0.4×3 provided that no subsequent step is shown
(ii) 18
accept $£ 0.18$ for both marks
or
their (b)(i) $\times 15$ correctly calculated
an answer 0.18 scores 1 mark
allow 1 mark for correct substitution
ie 1.2 or their (b)(i) $\times 15$ provided that no subsequent step is shown
(ii) TV

Table lamp
Food processor
all required and no other
any order
(b) any two from:

- transfers / requires / uses more energy / power accept more electricity used accept higher power
- more electricity needs to be generated
- more (fossil) fuels (likely) to be burnt accept a named fossil fuel
(c) (i) precise this answer only
(ii) any three from:
- can look for trends / patterns
- help reduce energy use / consumption
- reduce bills accept save money
- identify appliances which use a lot of energy
- replace appliances with more efficient ones
- see effect of leaving appliances on (standby) to monitor usage is insufficient answers in terms of environment are insufficient

25 (a) fan
drill
washing machine
four circled including correct three scores 1 mark five circled scores zero
(b) Appliances only transfer part of the energy usefully

The energy transferred by appliances makes the surroundings warmer

26 (a) (i) A
(ii) bar drawn with correct height ignore width of bar
(b) (i) $E=P \times t$
2.4
allow 1 mark for correct substitution
ie 1.2×2 provided no subsequent step shown
(ii) 36 or their (b)(i) $\times 15$ correctly calculated
or
their (b)(i) $\times 0.15$ correctly calculated with an answer given in $£$ allow 1 mark for correct substitution ie 2.4×15
or
their (b)(i) $\times 15$
allow 1 mark for correct substitution provided no subsequent step shown an answer $£ 0.36$ gains both marks

27 (a) electric current (rate of) flow of (electric) charge / electrons
accept $I=\frac{Q}{t}$
with Q and t correctly named
potential difference
work done / energy transferred per coulomb of charge
(that passes between two points in a circuit)
accept $V=\frac{W}{Q}$
with W and Q correctly named
(b) metals contain free electrons (and ions)
accept mobile for free
as temperature of filament increases ions vibrate faster /
with a bigger amplitude
accept atoms for ions
accept ions/atoms gain energy
accept vibrate more for vibrate faster
do not accept start to vibrate
electrons collide more (frequently) with the ions
or
(drift) velocity of electrons decreases
do not accept start to collide
accept increasing the p.d. increases the temperature (1 mark)
and
(and) resistance increases with temperature (1 mark) if no other marks scored
(c) 7.8
allow 1 mark for obtaining value 1.3 from graph
or allow 1 mark for a correct calculation using an incorrect current in the range 1.2-1.6 inclusive

28 Fan C
Kettle B

Lamp D

Radio E

1
[4]
(ii) 25 (hours)
allow 1 mark for obtaining number of $k W h=200$ an answer of 26(.3) gains both marks
allow 1 mark for correct substitution and / or transformation
ie $0.95=\frac{x}{8}$
95×8.0
(b) any two from

- transferred to the surroundings / air / atmosphere
- becomes spread out
- shared between (many) molecules
- (wasted as) heat / sound

30 (a) radio
radio must be chosen for reason to score
gives out sound
inclusion of other forms of energy negates mark
or
others give out heat / thermal energy
(b) Kettle
accept 2.5 (kW)
(c) $60(\mathrm{p})$
accept $£ 0.6(0)$
allow 1 mark for correct substitution ie 4×15
substitution only scores if no subsequent step shown
£60 scores 1 mark
(d) (bigger volume) takes more time (to boil)
accept explanation using data from graph
(so) more energy transferred
do not accept electricity for energy
(and) this costs more money
ignore references to cost of water
(a) transferred to surroundings / surrounding molecules / atmosphere
'it escapes' is insufficient
or
becomes dissipated / spread out
accept warms the surroundings
accept degraded / diluted
accept a correct description for
surroundings eg to the washing machine
do not accept transformed into heat on its own
(b) a smaller proportion / percentage of the energy supplied is wasted
owtte
accept a statement such as 'less energy is wasted' for $\mathbf{1}$ mark do not accept costs less to run
ignore references to uses less energy
1

2
(ii) any one from:

- less electricity needed
ignore answers in terms of the washing machine releasing less energy
an answer in terms of the washing machine releasing CO_{2} negates the mark
do not accept less energy is produced
- fewer power stations needed
- less fuel is burned
accept a correctly named fuel
do not accept less fuel is needed
(a) each hair gains the same (type of) charge or
(each) hair is negatively charged
do not accept hair becomes positively charged
or
(each) hair gains electrons
similar charges repel
accept positive charges repel
providing first marking point is in terms of positive charge or
negative charges repel
or
electrons repel
1
(b) 0.000002
accept correct substitution and transformation for 1 mark or
2×10^{-6}
ie $30 / 15$ or $.03 / 15000$ or $30 / 15000$ or $.03 / 15$
or
$2 \mu \mathrm{C}$
answers 2 and 0.002 gain 1 mark
(c) current
do not accept amp / amperes
(ii) 4.5
allow 1 mark for correct substitution
ie 1.5×3
allow 1 mark for the answers 1.5 or 6(.0)

33 (a) (i) $2(.0)$
accept 2000 W or 2000 watt(s)
accept answer given in table
do not accept 2000
(iii) 54
or
their (a)(ii) $\times 12$ correctly calculated
allow 1 mark for correct substitution
ie 4.5×12
or
their (a)(ii) $\times 12$
allow 1 mark if correct answer is given in pounds eg $£ 54$

2
(b) (i) 6 pm
temperature starts to rise faster only scores if 6 pm given
or
graph (line) is steeper / steepest it refers to graph gradient or temperature accept answers in terms of relative temperature rise eg 5 to $6 \mathrm{pm} 2^{\circ} \mathrm{C}$ rise, 6 to $7 \mathrm{pm} 6{ }^{\circ} \mathrm{C}$ rise accept temperature rises sharply / rapidly / quickly do not accept temperature starts to rise
(ii) middle box ticked
(b) (3kW) fan heater
accept 3 kW
accept the middle one
(c)
oil-filled
low level heat
cannot be knocked over / space saving / no trailing wires do not accept just wall-mounted
or more control over heat output do not accept just 3 heat settings

1
(a) electrical
sound
correct order only
(b) the energy transformed by the TV will be destroyed
(c) a higher efficiency than
fan
warms (office) rapidly or can be used to cool air (in summer)
accept can be used as a fan
accept cool air fan (setting)
accept 'it has a cool air setting in case it gets too hot' do not accept a specific reference to cooling the heater

ceramic

can be switched on for set periods of time do not accept just has a timer
or can be switched on before office is used / switched off automatically at night
do not accept just has a timer
(ii) any one from:

- different homes have different appliances(*)
- different homes have different numbers of appliances(*)
(*) accept all homes are different
- standby power not the same for all appliances
- some people will switch appliances off accept named appliances accept people waste different amounts of energy
- homes have different numbers of residents
- can't measure every (individual) home
accept any sensible suggestions
do not accept answers in terms of accurate / precise etc

1
(b) (i) increases amount of energy wasted
accept (encourages) people to leave appliances on (standby) accept increases it
(ii) any two from:

- less electricity needed / generated
- fewer power stations needed
- less coal is burned
do not accept coal is non-renewable / running out
answers in terms of fuel stocks neutral
- less pollutant gases produced
accept named gases
accept harmful for pollutant
accept greenhouse gases
accept reduce / slow / stop global warming
accept reduces acid rain
(c) joule
(d) (i) 6800
accept $£ 68$ for $\mathbf{3}$ marks an answer of 68 gains 2 marks
allow 2 marks for correct substitution ie 400×17
allow 1 mark for obtaining 400
answers of 7480, 4760, 12920, 4080 gain 2 marks
(ii) a small electricity
[10]
(ii) transferred to surroundings
accept goes into the air accept heats the surroundings up accept gets spread out accept transferred into heat (only)
do not accept wasted / lost unless qualified destroyed negates mark transferred into light / sound negates mark
(b) (i) 1.75
allow 1 mark for converting to kW
answers of $0.7,0.525,0.35,0.875,1.05,5.25$ gains 1 mark answers of 1750 or 17.5 gains 1 mark
(ii) 21 p or $£ 0.21$ or their $(\mathrm{b})(\mathrm{i}) \times 12$
(c) any two from:
- (more) electricity needs to be generated (more) electricity is being used
- (more) power stations needed
- (more) fossil fuels burnt accept named fossil fuel
- (more) pollutant gases emitted accept named gas accept harmful for pollutant accept greenhouse gases
accept atmospheric pollution
accept answer in terms of any form of electricity generation and an associated environmental problem
[8]

38 (a) electric drill C

MP3 player E
toaster B
(b) (i) 2100
no unit required / ignore units
accept 2.1 kW must have units for this
(ii) \mathbf{Y}
(iii) bar drawn with any height greater than \mathbf{Y} ignore width of bar
(c) (i) any one from:
answers must be a comparison

- holds more water
do not accept 1 litre of water on its own
- works in other countries
accept a named country
accept works at 2 voltages
- boils faster
- has a more powerful element
do not accept 1 kW element on its own
- can filter water
ignore can wash filter
(ii) any one from:
- it weighs less
- smaller to pack
- cheaper to use
answers must be a comparison
or state why the chosen feature is an advantage
accept boils enough for one drink

39 (a) £15
allow 1 mark for use of 125 ($k W h$)
allow 1 mark for an answer 1500
allow both marks for 1500 pence / p
allow 1 mark for correct calculation of annual cost for either freezer (£27 and £42)
(b) $£ 45$

or their $(\mathrm{a}) \times 3$

allow 1 mark for correct use of 3
allow 1 mark for $12-9=3$

1
(c) any two from:
the marks are for the explanation
yes plus explanation

- less electricity / energy needed / used accept less energy wasted
- less (fossil) fuels burned
accept a named fossil fuel
do not accept conserving (fossil) fuels
- less polluting gases emitted
accept a named polluting gas / greenhouse gases / carbon emissions / reduce global warming
accept an answer in terms of nuclear fuel
eg less nuclear fuel required (1)
less nuclear waste (1)
2
or no plus explanation
- old freezer must be disposed of
- hazardous chemicals inside freezer
accept CFC gases
- (lot of) energy used in producing new freezer
(a) iron
hairdryer
kettle

> answers can be in any order
(b) sound
(c) is more efficient than
(a) $£ 19.20$
allow 1 mark for correct substitution
ie 160×12
allow 1 mark for an answer (£)1920
an answer of 1920p gains both marks
an answer of $£ 40.80$ gains both marks
allow 1 mark for 340×12
(b) 340
allow 1 mark for correctly using the reading 62580
ie 62920-62580
accept $£ 40.80$ for both marks
(ii) transfers more energy accept transform or use for transfer accept electricity for energy allow higher (average) power and switched on for more time
(b) (i) 3 (kWh)
allow 1 mark for selecting the correct information
42 (a) kinetic accept movement

(iii) any one from:

- use the internet
- brochures
- reading adverts
- visiting shops
- recommendation from friends / plumbers

43 (a) (i) heat
(ii) temperature increases or (cause) convection (currents)
accept gets warmer accept gets hotter
(iii) 60% or 0.6

60 without \% scores 1 mark
0.6 with a unit scores 1 mark 60 with incorrect unit scores 1 mark
or correct substitution $\frac{120}{200}$
for 1 mark
(b) street
more (energy transferred as) light or less (energy transferred as) heat or useful energy output the highest
can only score this mark if first mark scored
all efficiencies calculated correctly score 2nd mark point
(a) each correct line scores 1 mark

if more than 3 lines are drawn mark incorrect ones first, to a maximum of 3 lines
(b) toaster
accept 1.2 kW
(c) (i) 400
(ii) £24 or 2400p
full credit for their (c)(i) $\times 6 p$ for full credit the correct numerical answer must have the correct unit
an answer of 24 or 2400 with no unit or the incorrect unit scores 1 mark
(c)(i) $\times 6$ incorrectly evaluated scores 1 mark
(d) 6
allow 6000 for 1 mark allow 3×2 for 1 mark

45 (a) (i) electrons
(ii) ammeter
do not accept ampmeter

must be capital A
horizontal lines not required no e.c.f.
1
(b) light bulb
answers in either order
hairdryer
(a) (i) any one from:
water to the mug
water to the air
mug to the air
mug to the table

both required

direction of transfer must be correct
1
(ii) when temperatures are the same
accept a specific example eg when the temperature of the water and mug are the same
accept radiant heat transfer will never stop
(b) wood
(c) (i) conduction
accept convection if not given as $3^{\text {rd }}$ answer
insulator
convection
(ii) any one from:
do not accept any rebuilding of house
double glazing
loft insulation
accept roof for loft
carpets
(cavity) wall insulation
do not accept closing doors and windows
draft excluders
foil behind radiators
accept blocking chimney
paint inside walls white
(a) Sun

Any valid
for 1 mark each

2
(b) From electric/pe or chemical in battery for 1 mark
to ke, light, sound, heat
3 for 1 mark each
(c) Gravitational pe OR just pe

For any gravity feed
OR Elastic pe
any valid
OR Food
For maintaining body/life etc.
OR Any descriptive answer
e.g. water in a high lake used to produce hydroelectric power 2 for 1 mark each
(a) (i) light electri for 1 mark each
(ii) $\ldots \ldots$....electrical......chemii for 1 mark each
(iii) \qquad electrical kinet for 1 mark each
(b) (i) $1500 / 10$ gains 1 mark

but

150
gains 2 marks
(ii) heat (thermal) or sound for 1 mark

Using wind (disadvantage)

any one from
does not generate much (electrical) energy
many hundreds wind turbines would be needed
accept many hundreds wind turbines would be needed or too much land would be needed for wind farms or wind energy is 'dilute'
the wind is unreliable
accept the wind does not blow all of the time or the wind is not always strong enough
noise / visual pollution
do not accept just the word pollution

Using coal (advantage)

any one from
can generate electricity all of the time
accept reliable electrical / energy supply
generates a lot of (electrical) energy

Using coal (disadvantage)

any one from
pollution by carbon dioxide / greenhouse gas
accept slow start-up time or production of ash or difficult to transport (coal) or there's not much coal left
non renewable
pollution by sulphur dioxide acid rain
(b) all link lines correct
accept one link line correct for one mark
(a) changes the sound wave(s)
to a varying or changing (electric) potential difference or p.d. or voltage or current or to an irregular alternating current or a.c. or transfers sound energy to electrical energy (1) mark is vibrations or pulses or of sound or in air become electrical waves
do not credit just 'to electricity' or 'to a.c'
(b) (i) decrease or reduce the amplitude accept less amplitude nothing else added
(ii) increase the frequency or decrease wavelength accept higher frequency nothing else added

