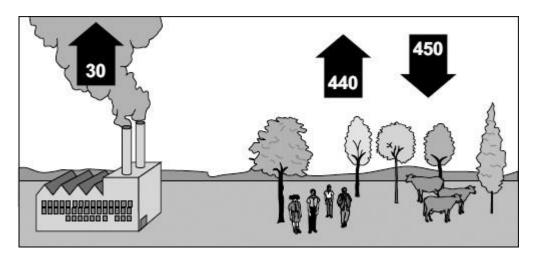
1 In a stable community, the processes that remove carbon are balanced by processes that return carbon.


The figure below shows a woodland community.

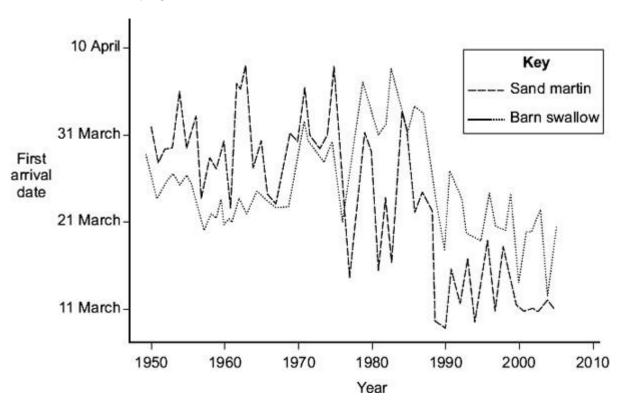
Describe how carbon is recycled in a woodland community.				

(Total 6 marks)

The diagram shows the mass of carbon dioxide released into and removed from the air each 2 year in billions of tonnes.

Describe the processes shown on the diagram that exchange carbon dioxide with the air.
Explain the overall effect of these processes on the mass of the carbon dioxide in the air.

Page 2 of 15


(Total 6 marks)

Scientists have observed changes in the migration patterns of some species of birds.

The graph shows the arrival dates in the UK of two species of birds, the Sand martin and the Barn swallow.

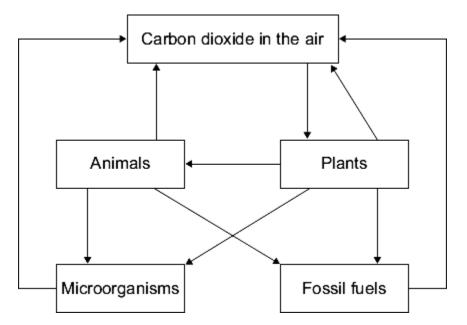
Both birds feed on flying insects.

3

Give two changes in migratory patterns shown in the data.	
Suggest reasons for the change in the migration pattern of the Sand martin.	

(Total 4 marks)

(2)


4 Approximately a third of UK domestic rubbish is organic matter such as food waste and gardening rubbish.

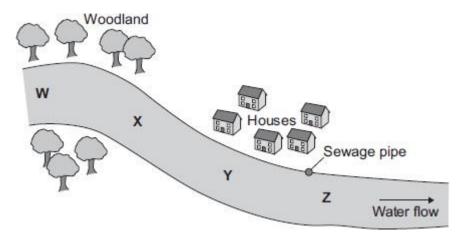
Many councils have started industrial composting schemes to decompose these wastes. One product of the decomposition is compost (decaying organic matter).

Use this information and your own knowledge to suggest reasons why more councils should be encouraged to start industrial composting schemes.

(Total 3 marks)

5 The diagram shows part of the carbon cycle.

cycled between living organisms and the air.


Your answer should include the names of any processes involved.

Use the information in the diagram and your own knowledge to describe in detail how carbon is

Two groups of students, **Group 1** and **Group 2**, were monitoring the oxygen concentration in a river.

They measured the oxygen concentration of the water at points **W**, **X**, **Y** and **Z**. The measurements were taken on the same day, but the two groups used different oxygen sensors.

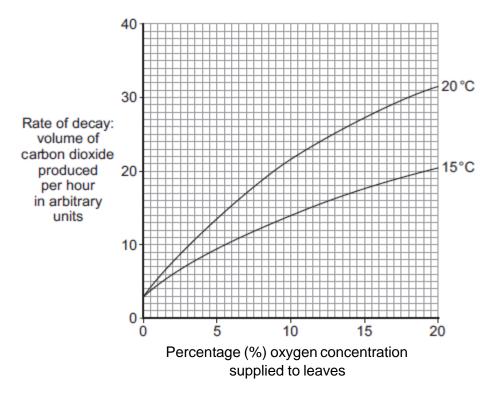
The sensors for both groups were working properly.

The results for the two groups are shown in the table.

	Concentration of oxygen in arbitrary units			
Sampling position W X Y				Z
Group 1	9.4	9.3	9.4	8.5
Group 2	9	9	9	9

The results of Group 2 did not show any difference in the concentration of oxygen at the four different sampling positions. The results of Group 1 did show differences.	ne
Suggest why.	
The results of Group 1 show the lowest concentration of oxygen was at sampling posit Z .	ion
Suggest why.	

(c) The students also counted the number of different invertebrates living in the river at points **W**, **X**, **Y** and **Z**.


The results are shown in the table.

Invertebrate	Sampling position				
Invertebrate	w	х	Y	Z	
Stonefly larva	4	5	4	0	
Water snail	16	15	16	10	
Bloodworm	0	0	0	25	
Freshwater louse	6	5	7	5	

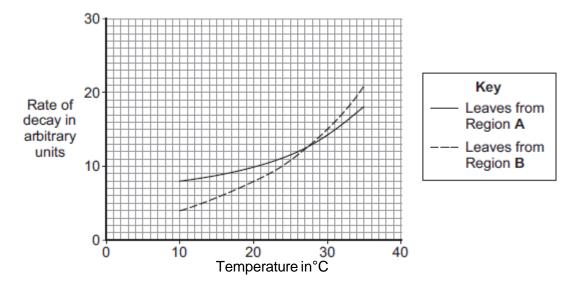
rom these results, which invertebrate is not suitable as concentration in water?	an indicator of oxygen
Give a reason for your choice.	
	(1) (Total 5 marks)

A scientist investigated the effect of oxygen concentration and temperature on the rate of decay of leaves in a container.

The scientist's results are shown in the graph.

	(a)	The rate of decay is	measured as the vol	lume of carbon	dioxide produce	ed per hour
--	-----	----------------------	---------------------	----------------	-----------------	-------------

Explain why carbon dioxide is produced during the process of decay.


(3)

Scientists collected leaves that had fallen from beech trees in two different parts of the UK, Region A and Region B.

Equal masses of leaves from the two regions were put in incubators at different temperatures. All other conditions were the same.

The leaves decayed in the incubators. The rate of decay of the leaves was measured.

The results are shown in the graph.

ive two conclusions you can make from the data and suggest a reason for each conc	clusion.
	
	—— (Total 4 mark

Mark schemes

1

any **six** from:

•	only credit release of carbon dioxide once when linked to a correct process		
	ignore references to burning		
	 (plants) photosynthesise (plants) take in carbon dioxide (plants) produce carbohydrates / fats / proteins accept produce glucose (carbon compounds transferred by) feeding respiration 		
	breaks down carbon compounds / carbohydrates		
	 accept glucose releases carbon dioxide organisms die / produce wastes / excrete (which are) decomposed / decayed by microorganisms allow broken down 		
	allow bacteria / fungi / microbes / decomposers(which) release carbon dioxide		
	(WITICH) Telease carbon dioxide		[6]
2	read 'the gas' or 'it' as carbon dioxide		
	(plants) photosynthesise	1	
	(plants) absorb carbon dioxide / CO ₂ (from the air)		
	allow take in / use <u>carbon dioxide / CO₂ (from theair)</u>	1	
	(overall) more carbon dioxide / CO ₂ is being released into the air than is being removed allow 470 (billion tonnes) released but / and 450 (billion tonnes) taken in	1	
	(by) <u>respiration</u> (by all organisms / any named organism) ignore breathing		
	ignore carbon	1	
	(and) combustion / burning		
	ignore carbon	1	
	(so) amount of carbon dioxide / CO ₂ in air is increasing		
	allow 20 (billion tonnes) of <u>carbon dioxide / CO₂</u> added to air each year		
		1	[6]

3	(a)	the birds now arrive earlier (in the UK)		
3		must imply both species of birds		
			1	
		the Sand martin (now) arrives before the Barn swallow		
		or		
		the Barn swallow (now) arrives later than the Sand martin or		
		arrival time of the two birds has reversed		
			1	
	(b)	any two from:		
		 warmer in UK <u>earlier</u> (in year) or 		
		colder abroad <u>earlier</u> (in year)		
		allow too hot / cold abroad <u>earlier</u> (in year)		
		ignore global warming		
		insects / food appears <u>earlier</u> (in year in UK)		
		or		
		shortage of insects / food abroad <u>earlier</u> (in year)		
		accept feasible reference to competition for food		
		new genes / mutation		
		allow evolution / natural selection		
		ignore adapted		
		ignore pollution		
			2	F 43
				[4]
4	redu	uces landfill		
-		accept reduces pollution from burning wastes		
		ignore less waste unqualified	1	
			1	
		eme self-financing		
	or prod	duces compost / fertiliser which can be sold		
	prod	duces composity fertiliser willon can be sold	1	
	prod	duces nutrients / fertiliser / minerals (ions) for plants		
	prod	allow returns / recycles nutrients into soil		
		ignore helps plants grow		
		- -	1	
				[3]

5	pian	ignore carbon	1		
	all o	rganisms / any named organism respire(s) and release(s) CO ₂ ignore breathing ignore carbon	1		
	any	four from:	1		
	• C:	arbon compounds / named compound made by plants			
	• p	lants eaten by animals			
	• d	ead organisms / faeces are decomposed / decayed allow broken down			
	• b	y bacteria / microorganisms			
	• d	ead plants and animals (may) form fossil fuels			
	• W	then (fossil) fuels are burnt they release CO $_{\rm 2}$ into the air	4		[6]
6	(a)	(sensor used by Group 2) had lower <u>resolution</u> accept converse answers allow poor / worse <u>resolution</u> allow (sensor used by Group 2) only measured to whole numbers ignore reference to sensitivity / precision / accuracy		1	
	(b)	microorganisms / bacteria (in water / from sewage) ignore references to plants		1	
		used up oxygen must be linked to microorganisms		1	
		during respiration		1	
	(c)	freshwater louse correct organism and reason needed for mark allow louse / lice			
		number of organisms changes little		1	[5]

plants absorb CO_2 for photosynthesis

i	allow correct named organisms		
•	allow detritus feeders / decomposers / worms	1	
break down	/ digest / feed on (dead organisms)		
•	accept use carbohydrates / glucose		
•	allow decomposes		
ı	ignore decay / rot	1	
(and release	e carbon dioxide when they) <u>respire</u>		
	do not allow respiration if linked to leaves / dead organisms	1	
(b) any two fror	m:	-	
• •	the higher the temperature the faster the rate of decay		
	allow faster / more carbon dioxide for faster rate of decay		
• t	the higher the oxygen concentration the faster the rate of decay		
• t	allow faster / more carbon dioxide for faster rate of decay the rate increases faster (with increasing oxygen concentration) at 20 °C (than 15 °C)		
	(unan 10 °°)	2	re1
conclusion with re	levant explanation:		[5]
	for microorganisms allow microbes, bacteria or fungi		
	rer mieroerganisme allew mierosoe, saetena er rangr		
<u>Conclusion</u>			
as temperature inc	creases the rate of decay increases		
	may refer to A, B or both	1	
<u>Explanation</u>		-	
(because) microo	rganisms / enzymes are more active in warmer conditions		
	allow microorganisms reproduce quicker	1	
Conclusion		•	
	from region B was affected more by temperature / increases more rapidly		
with temperature	monniegion b was affected more by temperature / increases more rapidly		
	accept description of this eg below 26-28°C leaves from region B		
	decay slower (than from region A), but above 26-28°C leaves from region B decay faster (than from region A)		
,	region D desay lactor (than nontregion A)	1	

(a)

7

8

microorganisms / bacteria / fungi

Explanation

(because) there were different types of microorganisms on the leaves allow (leaves from) different species of beech tree allow difference in water content of leaves ignore different levels of oxygen allow rate of decay of leaves from both regions the same at 26-28°C for 1 mark, if no other conclusions made if incorrect/incomplete conclusion ignore explanation

[4]

1