AQA, OCR, Edexcel GCSE

GCSE Maths

Area of Circles \& Sectors

Name:

M M E
 Mathsmadeeasy.co.uk

Guidance

1. Read each question carefully.
2. Don't spend too long on each question.
3. Attempt every question.
4. Always show your workings.

Revise GCSE Maths: www.MathsMadeEasy.co.uk/gcse-maths-revision/

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

1. Calculate the area between the two circles. Give your answer to 2 dp .

$$
\begin{aligned}
& \text { Area of Circle }=\pi r^{2} \\
& \begin{aligned}
& \text { Area of big circle }= \pi \times 16^{2}=256 \pi \\
& \text { Area of small circle }=\pi \times 7^{2}=49 \pi \\
& \begin{aligned}
\text { Difference in circles } & =256 \pi-49 \pi \\
& =207 \pi \\
& =650.31
\end{aligned}
\end{aligned} . \begin{aligned}
\end{aligned}
\end{aligned}
$$

Area $=$ \qquad $650.31 \ldots . \mathrm{cm}^{2}$
(3 marks)
2. The radius of the circle below is 6 cm . By first calculating the area of the square, calculate the total area between the square and the circle. Give your answer to 2dp.

$$
\begin{aligned}
O D & =6 \mathrm{~cm} \\
F D & =2 \times O D \\
& =2 \times 6 \\
& =12 \mathrm{~cm} \\
F E & =E D=x
\end{aligned}
$$

FED is a right-angle triangle.

$$
\begin{gathered}
F D^{2}=F E^{2}+E D^{2} \\
12^{2}=x^{2}+x^{2} \\
144=2 x^{2}
\end{gathered}
$$

$$
x^{2}=72
$$

$$
x=\sqrt{72}=6 \sqrt{2}
$$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

$$
\begin{aligned}
& \text { Area of square }=(6 \sqrt{2})^{2}=72 \\
& \begin{aligned}
\text { Area of circle } & =\pi r^{2} \\
& =\pi \times 6^{2} \\
& =36 \pi
\end{aligned}
\end{aligned}
$$

Area between square and circle $=36 \pi-72=41.10(2 d p)$

$$
\text { Area }=\ldots . . .41 .1 \ldots . \mathrm{cm}^{2}
$$ (3 marks)

3. The sector of a circle below has a radius of 5 m and the angle at the centre is 30°

Find the area of the sector. Give your answer to 2dp.

$$
\begin{aligned}
\text { Area of circle } & =\pi r^{2} \\
& =\pi \times 5^{2} \\
& =25 \pi \\
\text { Sector proportion } & =\text { Segment angle } \div 360^{\circ} \\
& =30^{\circ} \div 360^{\circ} \\
& =\frac{1}{12}
\end{aligned}
$$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

$$
\begin{aligned}
\text { Area of sector } & =\text { Circle area } \times \text { segment proportion } \\
& =25 \pi \times \frac{1}{12} \\
& =\frac{25 \pi}{12} \\
& =6.54 \mathrm{~cm}^{2}
\end{aligned}
$$

Find the arc length of the sector. Give your answer to 2dp.

$$
\begin{aligned}
\text { Circumference of circle } & =\pi d \\
& =10 \pi
\end{aligned}
$$

$$
\begin{aligned}
\text { Sector proportion } & =\text { Sector angle } \div 360^{\circ} \\
& =30^{\circ} \div 360^{\circ} \\
& =\frac{1}{12}
\end{aligned}
$$

Arc length $=$ circumference \times sector proportion

$$
\begin{gathered}
=10 \pi \times \frac{1}{12} \\
=\frac{10 \pi}{12} \\
=2.62 \mathrm{~cm}
\end{gathered}
$$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
4. Calculate the area of the shape below.

Give your answer to 2dp.

Area of 270° Sector

$$
\begin{aligned}
\text { Area of circle } & =\pi r^{2} \\
& =\pi \times 4^{2} \\
& =16 \pi
\end{aligned}
$$

Sector proportion $=$ Segment angle $\div 360^{\circ}$

$$
\begin{aligned}
& =270^{\circ} \div 360^{\circ} \\
& =\frac{3}{4}
\end{aligned}
$$

Area of sector $=$ Circle area \times segment proportion

$$
\begin{aligned}
& =16 \pi \times \frac{3}{4} \\
& =12 \pi
\end{aligned}
$$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

Area of 270° Sector

$$
\begin{aligned}
\text { Area of circle } & =\pi r^{2} \\
& =\pi \times 8^{2} \\
& =64 \pi
\end{aligned}
$$

$$
\begin{aligned}
\text { Sector proportion } & =\text { Segment angle } \div 360^{\circ} \\
& =90^{\circ} \div 360^{\circ} \\
& =\frac{1}{4}
\end{aligned}
$$

Area of sector $=$ Circle area \times segment proportion
$=64 \pi \times \frac{1}{4}$
$=16 \pi$
Total area $=12 \pi+16 \pi=28 \pi=87.96 \mathrm{~cm}$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

The area of the sector below is $26.15 \mathrm{~m}^{2}$

$$
9 m
$$

Calculate the value of the angle x. Give your answer to 2dp.

$$
\begin{aligned}
& \begin{aligned}
\text { Area of circle } & =\pi r^{2} \\
& =\pi \times 9^{2} \\
& =81 \pi
\end{aligned} \\
& \begin{aligned}
\text { Sector proportion } & =\text { sector area } \div \text { circle area } \\
& =26.15 \div 81 \pi \\
& =0.103(3 d p)
\end{aligned} \\
& \text { angle }
\end{aligned}
$$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
5. A set of circles have radii in the ratio 1:2:3:5.

What is the ratio of their areas?
Give your answer in its simplest terms.

$$
\text { Area of circle }=\pi r^{2}
$$

Radius	Area
1	π
2	4π
3	9π
5	25π

Areas as ratios
$\pi: 4 \pi: 9 \pi: 25 \pi$
Diving all by π

$$
1: 4: 9: 25
$$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
6. The largest circle in the diagram below has a radius of 10 m

The radius of the white circle is 7 m
Each small red circle has a diameter of 2 m

What percentage of the area in the diagram is red?
Red area $=$ area of big circle - area of white circle + area of small circles

$$
\left.\left.\begin{array}{rl}
\text { Area of circle } & =\pi r^{2} \\
\text { Area of big circle } & =\pi \times 10^{2} \\
& =100 \pi \mathrm{~m}^{2}
\end{array}\right\} \begin{array}{rl}
\text { Area of white circle } & =\pi \times 7^{2} \\
& =49 \pi \mathrm{~m}^{2}
\end{array}\right] \begin{aligned}
& \text { Small circle radius }=2 \div 2=1 \text { c } \\
& \begin{aligned}
\text { Area of small circle } & =\pi \times 1^{2} \\
& =\pi \mathrm{cm}^{2}
\end{aligned} \\
& \begin{aligned}
\text { Red area } & =100 \pi-49 \pi+5 \times \pi \\
= & 100 \pi-49 \pi+5 \pi \\
& =56 \pi \mathrm{~m}^{2}
\end{aligned}
\end{aligned}
$$

Percentage of area that is red $=$ red area \div total area

$$
\begin{aligned}
& =56 \pi \div 100 \pi \\
& =56 \%
\end{aligned}
$$

Percentage $=$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
© Maths Made Easy 2018

