AQA, OCR, Edexcel GCSE

GCSE Maths

Volumes of 3D Shapes

Name:

M M E Mathsmadeeasy.co.uk

Guidance

1. Read each question carefully.
2. Don't spend too long on each question.
3. Attempt every question.
4. Always show your workings.

Revise GCSE Maths: www.MathsMadeEasy.co.uk/gcse-maths-revision/

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

1. Calculate the volume of the cuboid below.

$3 \times 12 \times 16=576$
Volume $=\ldots 576 \ldots . \mathrm{cm}^{3}$
2. Calculate the volume of the square based pyramid below.

$$
\begin{gathered}
\text { Volume }=\frac{a^{2} h}{3} \\
\text { Volume }=\frac{5^{2} \times 12}{3}=100
\end{gathered}
$$

$$
\text { Volume }=\ldots 100 \ldots . . . m^{3}
$$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
3. Which prism has the greater volume?

The shape below, or a cylinder with diameter 9 cm and height 2 cm .

Cylinder

$$
\begin{gathered}
\text { Volume }=\pi r^{2} h \\
\text { radius }=\frac{\text { diameter }}{2}=\frac{9}{2}=4.5 \\
\text { Volume }=\pi \times 4.5^{2} \times 2=127.23 \mathrm{~cm}^{3}
\end{gathered}
$$

Shape

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

$$
\begin{gathered}
\text { Area of Cross }- \text { section }=16+6=22 \mathrm{~cm} \\
\text { Volume }=\text { area of corss section } \times \text { length }=22 \times 3=66 \mathrm{~cm}^{3}
\end{gathered}
$$

The cylinder has a bigger volume.
4. Calculate the volume of a sphere with radius 4 m .

$$
\begin{gathered}
\text { Volume of sphere }=\frac{4}{3} \pi r^{3} \\
\text { Volume }=\frac{4}{3} \times \pi \times 4^{3}=\frac{256 \pi}{3}
\end{gathered}
$$

Volume $=\ldots \frac{256 \pi}{3} . . \mathrm{m}^{3}$
5. 1500 ml of water is poured into an open-topped cylinder with diameter 16 cm and height 12 cm .

How high does the water reach from the base of the cylinder?
Give your answer to 2d.p.

$$
\begin{gathered}
\text { Volume }=\pi r^{2} h \\
\text { Volume }(\text { amount of water })=1500 \\
\text { Radius }=16 \div 2=8
\end{gathered}
$$

Substituting these values into the formula to find h :

$$
\begin{aligned}
& 1500=8^{2} \pi h \\
& 1500=64 \pi h
\end{aligned}
$$

Rearranging to find h :

$$
h=\frac{1500}{64 \pi}=7.46(2 d p)
$$

The water reaches 7.46 cm from the base of the cylinder.
6. Typically, when buying an ice cream cone, a sphere of ice cream is pressed into the cone, so a hemi-sphere of ice cream protrudes from the top. The rest of the ice cream is contained within the cone.

In this case the cone is 10 cm tall, and the radius of the sphere and cone are both 4cm.

What proportion of the volume of the cone is filled with ice cream? Give your answer as a percentage.

Volume of Cone

$$
\begin{gathered}
\text { Volume }=\pi r^{3} \frac{h}{3} \\
h=10 \\
r=4 \\
\text { Volume }=\pi \times 4^{3} \times \frac{10}{3}=\frac{640 \pi}{3}
\end{gathered}
$$

Volume of Sphere

$$
\begin{gathered}
\frac{4}{3} \pi r^{3} \\
\text { Volume }=\frac{4}{3} \times \pi \times 4^{3}=\frac{256 \pi}{3}
\end{gathered}
$$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

Volume of ice cream inside of cone will be half of the volume of the sphere.

$$
\frac{256 \pi}{3} \div 2=\frac{128 \pi}{3}
$$

To find the proportion of ice cream in the cone to the volume of the cone, divide the ice cream by the cone.

$$
\frac{640 \pi}{3} \div \frac{128 \pi}{3}=\frac{1}{5}
$$

7. Water fills a square based pyramid below to a height of h.

Calculate the proportion of the pyramid that is filled with water.

Give your answer as a percentage.

Volume of square based pyramid $=a^{2} \frac{\text { height }}{3}$

Volume of Larger Pyramid

$$
\begin{gathered}
\text { Volume }=x^{2} \frac{3 h}{3} \\
\text { Volume }=x^{2} h
\end{gathered}
$$

Volume of Smaller Pyramid

$$
\begin{gathered}
\text { Volume }=\left(\frac{x}{2}\right)^{2} \frac{2 h}{3} \\
\text { Volume }=\frac{x^{2}}{4} \times \frac{2 h}{3}=\frac{x^{2} h}{6}
\end{gathered}
$$

> Volume of water = Larger Pyramid - Smaller Pyramid

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

$$
\text { Water volume }=x^{2} h-\frac{x^{2} h}{6}=\frac{5 x^{2} h}{6}
$$

Proportion filled $=$ Water volume \div Larger pyramid

$$
\begin{gathered}
\frac{5 x^{2} h}{6} \div x^{2} h=\frac{5}{6} \\
\frac{5}{6}=83.3 \%
\end{gathered}
$$

