AQA, Edexcel, OCR

A Level

A Level Mathematics

Proof by Contradiction

(Answers)

Name:

M M E Mathsmadeeasy.co.uk

Total Marks:

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

A1 - Proof Answers
AQA, Edexcel, OCR

1) Prove that there is an infinite amount of prime numbers.

Proof by contradiction.
[1 mark]
Assume there are a finite number of prime numbers, that we write as:

$$
p_{1}, p_{2}, p_{3}, \ldots, p_{n}
$$

[1 mark]
And we define a new number as

$$
m=p_{1} \times p_{2} \times p_{3} \times \ldots \times p_{n}+1
$$

[1 mark]
As we are saying that there are no other prime numbers than the list defined in (1), then m should not be a prime number and therefore divisible by p_{n}. [1 mark]

However, if we do this we are left with a remainder, 1 , and as there are no integers that divide 1 , then m must also be a prime number. This is the contradiction. Hence there are infinitely many prime numbers.
2) For all real numbers if x^{3} is rational, then x is also rational. True or false?
[1 mark]
This is a true statement.
[1 mark]
Let x be a rational number, defined as

$$
x=\frac{p}{q}
$$

an irreducible fraction, where $p, q \in \mathbb{Z}$.
[1 mark]
Cubing both sides of equation gives

$$
x^{3}=\frac{p^{3}}{q^{3}}
$$

[1 mark]
We note that are integers because p and q are integers then so are their
cubes. This means that x^{3} is defined as the ratio of two integers, thus making it rational.
3)

The graph is defined as $k x^{2}+6 k x+5=0$ where k is constant. Prove that $0 \leq \boldsymbol{k} \leq \frac{\mathbf{5}}{\mathbf{9}}$.
[1 mark]
Here you must spot that the graph does not intersect the x-axis and thus
there are no real root solutions to this problem.
The graph clearly shows that the constant k is7 not negative.
[1 mark]
Insert $k=0$, and show $0+0+5=0$ is not a viable solution.
[1 mark]
Note, using the quadratic equation discriminant that for non-real roots, $b^{2}<$ $4 a c$.

Inserting values of $a=k, b=6 k, c=5$, gives

$$
\begin{gathered}
36 k^{2}<20 k \\
4 k(9 k-5)<0 \\
0<k<\frac{5}{9}
\end{gathered}
$$

[1 mark]
However, we know $k=0$, is a solution so we can modify it to:

$$
0 \leq k<\frac{5}{9}
$$

4) Prove that $\sqrt{2}$ is irrational.

Proof by contradiction.
[1 mark]
Assume that is rational and can be defined as

$$
\sqrt{2}=\frac{a}{b}
$$

an irreducible fraction, where $a, b \in \mathbb{Z}$.
[1 mark]
Squaring both sides gives

$$
\begin{gathered}
2=\frac{a^{2}}{b^{2}} \\
2 b^{2}=a^{2}
\end{gathered}
$$

[1 mark]
The LHS is an even number, this means that the RHS must also be an even number. Thus, both a and b are even.
[1 mark]
Contradiction. We originally stated that $\frac{a}{b}$ was irreducible, however if the integers were both even it would be reducible, by dividing by 2 .
5) If $\mathbf{a}, \mathbf{b} \in \mathbb{Z}$, then $\mathbf{a}^{2}-\mathbf{4 b}-\mathbf{3} \neq \mathbf{0}$.

Proof by contradiction.
[1 mark]
Assume the quadratic does equal zero.

$$
\begin{gather*}
a^{2}-4 b-3=0 \tag{1}\\
\Rightarrow a^{2}=4 b+3 \tag{2}
\end{gather*}
$$

[1 mark]
The RHS here is odd, therefore, the LHS a^{2} and ultimately a is odd. We can define a as

$$
a=2 n+1
$$

[1 mark]
Substituting (2) back into (1) gives

$$
\begin{gathered}
(2 n+1)^{2}=4 b+3 \\
4 n^{2}+4 n+1=4 b+3 \\
4\left(n^{2}+n-b\right)=2 \\
\left(n^{2}+n-b\right)=\frac{2}{4}
\end{gathered}
$$

[1 mark]
Contradiction, on the LHS we have integers and on the RHS we have a fraction. Therefore, the assumption that the quadratic equals zero is incorrect.
6) Using proof by contradiction show that there are no positive integer solutions to the Diophantine equation $\boldsymbol{x}^{2}-\boldsymbol{y}^{2}=\mathbf{1 0}$.
[1 mark]
Assume positive integer solutions.
[1 mark]
Spot solution is difference of two squares.

$$
\begin{gather*}
(x+y)(x-y)=1 \tag{2}\\
x+y=1, x-y=1 \\
x+y=-1, x-y=-1
\end{gather*}
$$

Solving (1), by adding, gives:

$$
x=2, y=0
$$

[1 mark]
This is a contradiction as x and y should be positive.
Solving (2), by adding, gives:

$$
x=-1, y=0
$$

[1 mark]
Again, this is a contradiction as x and y should be positive.
7) If a is a rational number and b is an irrational number, then $a+b$ is an irrational number.

Demonstrate, using proof, why the above statement is correct.
Proof by contradiction.
[1 mark]

Assume, a is a rational number, b is an irrational number $a+b$ is a rational number.
Therefore, a can be represented as the ratio of two integers,

$$
\frac{m}{n}
$$

b can be left the same and $a+b$ can also be represented as the ratio of two integers,

$$
\frac{j}{k}
$$

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.
[1 mark]
Writing our assumptions out gives

$$
\begin{aligned}
& \frac{m}{n}+b=\frac{j}{k} \\
\Rightarrow & b=\frac{j}{k}-\frac{m}{n} \\
\Rightarrow & b=\frac{k m-n j}{k n}
\end{aligned}
$$

[1 mark]
Contraction. This last statement says b equals the product of two integers (km) minus the product of two other integers ($n j$), all divided by another integer product ($k n$). This means b is rational. However, we know b is irrational so the assumption that rational + irrational $=$ rational is incorrect.
8) Prove that triangle ABC can have no more than one right angle.

Proof by contradiction.

$$
\angle A+\angle B+\angle C=180^{\circ}
$$

[1 mark]
If

$$
\angle A=90^{\circ} \text { and } \angle B=90^{\circ}
$$

then

$$
\begin{gathered}
90^{\circ}+90^{\circ}+\angle C=180^{\circ} \\
\angle C=0^{\circ}
\end{gathered}
$$

[1 mark]
Contradiction. Triangles must have three angles, one cannot equal 0 .

9) Prove that the sum of three consecutive integers is divisible by 3.

Let the first integer be n, the second $n+1$ and the third $n+2$.
[1 mark]
Their sum, therefore, is

$$
\begin{gathered}
n+(n+1)+(n+2) \\
3 n+3 \\
3(n+1)
\end{gathered}
$$

[1 mark]

Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources.

And three is divisible by three.
10) The number of even integers is limitless. Prove or disprove this statement. Proof by contradiction.
[1 mark]
Assume the number of even integers is limited and this largest number is called L.

$$
L=2 n
$$

as it is even.
[1 mark]
Consider, L+2

$$
\begin{gathered}
L+2=2 n+2 \\
L+2=2(n+1)
\end{gathered}
$$

which is also even and larger than L .
[1 mark]
This is a contradiction to our original assumption.
11) Suppose $a \in \mathbb{Z}$ If \boldsymbol{a}^{2} is even, then \boldsymbol{a} is even.

Proof by contradiction.
[1 mark]
Suppose a^{2} is not even, then we can define it as

$$
\begin{gathered}
a^{2}=(2 n+1)^{2} \\
a^{2}=4 n^{2}+4 n+1 \\
a^{2}=2\left(2 n^{2}+2\right)+1
\end{gathered}
$$

which is an odd number.
[1 mark]
This means a^{2} is an odd number, if a is an even number, this makes a^{2} an even number too. How can a^{2} be both even and odd. It cannot.
12) Prove that $\frac{d}{d x}\left(3^{\frac{1}{2}} x+\pi\right)$ is irrational.
[1 mark]
Correctly differentiate the statement to give $3^{\frac{1}{2}}$, which is the same as $\sqrt{3}$.
Assume $\sqrt{3}$ is rational and can be represented as $\frac{m}{n}$, an irreducible fraction.
[1 mark]

$$
\begin{align*}
& \sqrt{3}=\frac{m}{n} \tag{1}\\
& \Rightarrow 3=\frac{m^{2}}{n^{2}} \tag{2}\\
& \Rightarrow 3 n^{2}=m^{2}
\end{align*}
$$

Assuming n is even, thus making m even, would mean that the original irreducible fraction $\frac{m}{n}$ could have been reduced. Assuming n is odd, this makes m also odd, allows us to continue with the proof.
[1 mark]
We can write

$$
\begin{align*}
n & =2 j+1 \tag{4}\\
m & =2 k+1 \tag{5}
\end{align*}
$$

[1 mark]
Substituting (4) and (5) back into (3) gives

$$
\begin{gather*}
3(2 j+1)^{2}=(2 k+1)^{2} \\
3\left(4 j^{2}+4 j+1\right)=4 k^{2}+4 k+1 \\
12 j^{2}+12 j+2=4\left(k^{2}+k\right) \\
6 j^{2}+6 j+1=2\left(k^{2}+k\right) \tag{6}
\end{gather*}
$$

[1 mark]
Contradiction. On the left-hand side of (6) we have an odd integer (as we have two terms containing 6 plus 1) and on the right-hand side we have an even integer.
This means that our original assumption that $\sqrt{3}$ is rational is incorrect.

