GCE Examinations

Advanced Subsidiary / Advanced Level

Statistics

Module S3

Paper F

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

S3 Paper F - Marking Guide

1. (a) e.g. get information on views of each age group

B1
(b) 26, 31, 65, 44, 01, 48, 43, $12 \quad$ M1 A2
(c) e.g. whether or not they have children B1
(5)
2. (a) $r=\frac{2564.33}{\sqrt{3747.73 \times 2791.33}}=0.7928$

M1 A1
(b) $\quad \mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0$

B1
$n=15,5 \%$ level \therefore C.R. is $r>0.4409 \quad$ M1 A1
$0.7928>0.4409 \therefore$ significant
there is evidence that those good at maths are better at visio-spatial A1 (6)
3. (a) C.I. $\bar{x} \pm 1.6449 \frac{\sigma}{\sqrt{n}}=31.4 \pm 1.6449 \cdot \frac{6.8}{\sqrt{60}}$
giving (29.96, 32.84)
M1 A1
width $=2 \times 1.6449 \times \frac{6.8}{\sqrt{n}} \quad \therefore 2 \times 1.6449 \times \frac{6.8}{\sqrt{n}}<1.5$
M1 A1
$\therefore \sqrt{n}>14.91376$
A1
giving $n>222.42$ so need 223 observations
M1 A1 (9)
4. (a) $\mathrm{P}(0)=\left(\frac{4}{5}\right)^{6}=0.2621$
$P(1)=6\left(\frac{1}{5}\right)\left(\frac{4}{5}\right)^{5}=0.3932 \quad$ [or from tables]
$P(2)=\frac{6 \times 5}{2}\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{4}=0.2458$
$\times 120$ to give exp. freqs. $31.46,47.19,29.49$
M1 A2
(b) $\quad \mathrm{H}_{0}: \mathrm{B}\left(6, \frac{1}{5}\right)$ is a suitable model
$\mathrm{H}_{1}: \mathrm{B}\left(6, \frac{1}{5}\right)$ is not a suitable model B1
combining groups ≥ 3

O	E	$(O-E)$	$\frac{(O-E)^{2}}{E}$
26	31.46	-5.46	0.9476
56	47.19	8.81	1.6448
28	29.49	-1.49	0.0753
10	11.86	-1.86	0.2917

$\therefore \Sigma \frac{(O-E)^{2}}{E}=2.959$
M1 A2
$v=4-1=3, \chi_{\text {crit }}^{2}(5 \%)=7.815$
M1 A1
$2.9594<7.815 \quad \therefore$ do not reject H_{0}
$\mathrm{B}\left(6, \frac{1}{5}\right)$ is a suitable model
A1
(c) $\mathrm{B}\left(6, \frac{1}{5}\right)$ is the dist. expected with guessing
\therefore suggests the group are not telepathic
B1
(12)
5. (a) expected freq. $18-34 /$ Pro $=\frac{100 \times 64}{200}=32$

$$
35-54 / \operatorname{Pro}=\frac{100 \times 66}{200}=33
$$

giving expected freqs $\quad 32 \quad 32$
3333
$35 \quad 35$

A1

H_{0} : no association between age and attitude to Europe
H_{1} : association between age and attitude to Europe
B1

O	E	$(O-E)$	$\frac{(O-E)^{2}}{E}$
43	32	11	3.7813
21	32	-11	3.7813
30	33	-3	0.2727
36	33	3	0.2727
27	35	-8	1.8286
43	35	8	1.8286

$\therefore \Sigma \frac{(O-E)^{2}}{E}=11.765$
M1 A2
$v=2, \chi_{\text {crit }}^{2}(5 \%)=5.991$
$11.765>5.991 \quad \therefore$ significant
there is an association between age and attitude to Europe
A1
(b) $\quad v=2, \chi_{\text {crit }}^{2}(5 \%)=5.991$
$4.872<5.991 \therefore$ not significant
there is no association amongst those who voted, get different result M1 A1
6. (a) let $E=$ how much longer for first two legs than next two

$$
\begin{array}{rlrl}
\therefore E & \sim \mathrm{~N}\left(63.1+65.7-65.4-62.5,1.2^{2}+1.5^{2}+1.8^{2}+0.9^{2}\right) & & \text { M1 A2 } \\
& =\sim \mathrm{N}(0.9,7.74) & & \text { M1 } \\
\mathrm{P}(E<0) & =\mathrm{P}\left(Z<\frac{0-0.9}{\sqrt{7.74}}\right) & & \text { M1 A1 } \\
& =\mathrm{P}(Z<-0.32)=1-0.6255=0.3745 &
\end{array}
$$

(b) let $F=$ total time for first team
$\therefore F \sim \mathrm{~N}(63.1+65.7+65.4+62.5,7.74)=\sim \mathrm{N}(256.7,7.74)$
M1
let $G=$ how much longer second team take in total
$\therefore G \sim \mathrm{~N}\left(259.0-256.7,3.4^{2}+7.74\right)=\sim \mathrm{N}(2.3,19.3)$
M1 A1
$\mathrm{P}($ first team wins one race $)=\mathrm{P}(G>0)=\mathrm{P}\left(Z>\frac{0-2.3}{\sqrt{19.3}}\right)$ M1

$$
=\mathrm{P}(Z>-0.52))=0.6985
$$

M1 A1
$\mathrm{P}($ first team wins all four $)=(0.6985)^{4}=0.238$
M1 A1
7.
(a) $\hat{\mu}=\bar{t}=\frac{7335}{500}=14.7$

M1 A1
$\hat{\sigma}^{2}=s^{2}=\frac{500}{499}\left(\frac{172040}{500}-14.67^{2}\right)=129.1$
(b) $\quad \mathrm{H}_{0}: \mu_{L}=\mu_{M} \quad \mathrm{H}_{1}: \mu_{L}>\mu_{M}$

B1
5% level \therefore C.R. is $z>1.6449$
M1 A1
test statistic $=\frac{15.9-14.7}{\sqrt{\frac{108.5}{200}}+\frac{129.1}{500}}=1.34$
M2 A2
$1.34<1.6449 \therefore$ do not reject H_{0}
M1
no evidence of difference in mean length of calls
(c) distributions not necessarily normal but by CLT sample mean distributed approximately normally whatever dist. for large sample \therefore can do test B2

Performance Record - S3 Paper F
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Question no. } & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \text { Total } \\ \hline \text { Topic(s) } & \text { sampling } & \begin{array}{l}\text { pmcc, } \\ \text { hyp. test }\end{array} & \begin{array}{l}\text { confidence } \\ \text { interval }\end{array} & \begin{array}{l}\text { goodness } \\ \text { of fit, } \\ \text { binomial }\end{array} & \begin{array}{l}\text { conting. } \\ \text { table } \\ \text { Marks }\end{array} & 5 & 6 & 9 \\ \hline\end{array} \begin{array}{l}\text { linear } \\ \text { comb. of } \\ \text { Normal } \\ \text { r.v. }\end{array} \begin{array}{l}\text { unbiased } \\ \text { estimats, } \\ \text { diff. of } \\ \text { means } \\ \text { hyp. test }\end{array}\right)$

