GCE Examinations

Advanced Subsidiary / Advanced Level

Statistics

Module S3

Paper D

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

S3 Paper D - Marking Guide

1. (a) list volunteers
from random pt in table look at 2-digit nos until get one from 01 to 12 take this one from list and then every $12^{\text {th }}$ person on list B3
(b) e.g. advantage - quicker disadvantage - not random unless list is, so may introduce bias \quad B2
(5)
2.

(a) $\bar{x}=\frac{1419}{30}=47.3$ M1
C.I. is $\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}=47.3 \pm 1.96 \cdot \frac{5}{\sqrt{30}}$ M1 A1
giving (45.51, 49.09)
(b) $\frac{19}{20}$
B1
(c) it either does or doesn't include true mean \therefore probability is 0 or 1
B1
3. (a)

candidate	A	B	C	D	E	F
exp. rank	3	1	4	6	5	2
new rank	6	3	2	4	5	1
d^{2}	9	4	4	4	0	1

$\Sigma d^{2}=22$
M2 A1
$r_{s}=1-\frac{6 \times 22}{6 \times 35}=0.3714$
M1 A1
(b) $\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0$
$n=6,5 \%$ level \therefore C.R. is $r_{s}>0.8286$
B1
$0.3714<0.8286 \quad \therefore$ not significant
there is no evidence of positive correlation
A1
(c) e.g. needs training as assessment not in line with experienced manager B1
(10)
4. (a) $\hat{\mu}=\bar{t}=\frac{1039}{30}=34.6$

M1 A1
$\hat{\sigma}^{2}=s^{2}=\frac{30}{29}\left(\frac{65393}{30}-34.633^{2}\right)=1014.1$
M1 A1
(b) $\quad \frac{\sum x}{20}=32.0 \therefore \Sigma x=640 \quad \hat{\mu}$ for combined sample $=\frac{1039+640}{50}=33.6 \quad$ M1 A1
$963.4=\frac{20}{19}\left(\frac{\sum x^{2}}{20}-32.0^{2}\right)$ giving $\Sigma x^{2}=38784.6 \quad$ M1 A1
$\hat{\sigma}^{2}$ for combined sample $=\frac{50}{49}\left(\frac{65393+38784.6}{50}-33.58^{2}\right)=975.4 \quad$ M1 A1
5. (a) let $W=$ weight of egg

$$
\begin{array}{ll}
\text { let } A=W_{1}-W_{2} \therefore A \sim \mathrm{~N}\left(0,2 \times 3.9^{2}\right)=\sim \mathrm{N}(0,30.42) & \text { M1 A1 } \\
\text { require } 2 \times \mathrm{P}(A>4)=2 \times \mathrm{P}\left(Z>\frac{4-0}{\sqrt{30.42}}\right) & \text { M1 } \\
\quad=2 \times \mathrm{P}(Z>0.73)=2 \times(1-0.7673)=0.465 & \text { M1 A1 }
\end{array}
$$

(b) let $T=$ total weight of box and eggs

$$
\begin{array}{rlrl}
\therefore T \sim \mathrm{~N}\left(28+6 \times 55,1.2^{2}+6 \times 3.9^{2}\right)=\sim \mathrm{N}(358,92.7) & & \text { M1 A2 } \\
\mathrm{P}(T<350) & =\mathrm{P}\left(Z<\frac{350-358}{\sqrt{92.7}}\right) & & \text { M1 } \\
& =\mathrm{P}(Z<-0.83)=1-0.7967=0.2033 & & \text { M1 A1 }
\end{array}
$$

6. (a)

	accident	no accident	
$<25 \mathrm{yrs}$	104	216	320
$\geq 25 \mathrm{yrs}$	16	64	80
	120	280	400

M1 A1
(b) (i) expected freq. $<25 /$ accident $=\frac{120 \times 320}{400}=96$

M1 A1
giving expected freqs $\quad 96 \quad 224$
$24 \quad 56$
A1
H_{0} : no assoc'n between age pass test and accident in next 2 yrs H_{1} : there is assoc'n between age pass test and acc in next 2 yrs

B1

O	E	$(O-E)$	$\frac{(O-E)^{2}}{E}$
104	96	8	0.6667
216	224	-8	0.2857
16	24	-8	2.6667
64	56	8	1.1429

$$
\therefore \Sigma \frac{(O-E)^{2}}{E}=4.762
$$

M1 A2
$v=1, \chi_{\text {crit }}^{2}(5 \%)=3.841$
$4.762>3.841 \therefore$ significant
evidence of assoc'n between age pass test and acc in next 2 yrs
(ii) using totals, which must agree, once know one value can calculate all others

B1

(c) higher proportion of accidents in <25 led to significant result extra data increases this difference so still significant

B2
7. (a) let $X=$ length of adult male feet

$$
\begin{aligned}
& \mathrm{P}(21.5<X<24.5)=\mathrm{P}\left(\frac{21.5-22.4}{2.8}<Z<\frac{24.5-22.4}{2.8}\right) \\
& =\mathrm{P}\left({ }^{-} 0.32<Z<0.75\right)=0.7734-(1-0.6255)=0.3989 \quad \text { M1 A1 } \\
& \text { exp. freq. }=0.3989 \times 200=79.78 \\
& \text { A1 } \\
& \mathrm{P}(24.5<X<27.5)=\mathrm{P}\left(0.75<Z<\frac{27.5-22.4}{2.8}\right) \\
& =\mathrm{P}(0.75<Z<1.82)=0.9656-0.7734=0.1922 \quad \text { M1 } \\
& \text { exp. freq. }=0.1922 \times 200=38.44 \\
& \text { A1 } \\
& \text { exp. freq. for }>27.5=200-\text { total of others }=6.88 \\
& \text { A1 }
\end{aligned}
$$

(b) $\quad \mathrm{H}_{0}: \mathrm{N}\left(22.4,2.8^{2}\right)$ is a suitable model $\mathrm{H}_{1}: \mathrm{N}\left(22.4,2.8^{2}\right)$ is not a suitable model

O	E	$(O-E)$	$\frac{(O-E)^{2}}{E}$
24	16.46	7.54	3.4539
48	58.44	-10.44	1.8651
69	79.78	-10.78	1.4566
41	38.44	2.56	0.1705
18	6.88	11.12	17.9730

$\therefore \Sigma \frac{(O-E)^{2}}{E}=24.919$
M1 A2
$v=5-1=4, \chi^{2}$ crit $(10 \%)=7.779$
M1 A1
$24.919>7.779 \therefore$ reject H_{0}
$\mathrm{N}\left(22.4,2.8^{2}\right)$ is not a suitable model
(c) use data to estimate mean and std. dev.
combine any cells with exp. freqs. <5 and repeat calculation
$v=$ no of cells after combining -3 as parameters have been estimated \quad B3
Performance Record - S3 Paper D

Question no.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
Topic(s)	sampling	confidence interval	Spearman's, hyp. test	unbiased estimates	linear comb. of Normal r.v.	conting. table	goodness of fit, Normal	
Marks	5	7	10	10	11	15	17	75
Student								

