GCE Examinations

Statistics Module S2

Advanced Subsidiary / Advanced Level

Paper F

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.

Mathematical and statistical formulae and tables are available.

This paper has 6 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

1. *(a)* The random variable *X* follows a Poisson distribution with a mean of 1.4

		Find $P(X \le 3)$.	(3 marks)
	<i>(b)</i>	The random variable <i>Y</i> follows a binomial distribution such that $Y \sim B(20,$	0.6).
		Find $P(Y \le 12)$.	(4 marks)
2.		tiving instructor keeps records of all the learners she has taught. In order to an ess rate she wishes to take a random sample of 120 of these learners.	nalyse her
	(a)	Suggest a suitable sampling frame and identify the sampling units.	(2 marks)
		believes that only 1 in 20 of the people she teaches fail to pass their test in the npts. She decides to use her sample to test whether or not the proportion is dis	
	<i>(b)</i>	(b) Using a suitable approximation and stating clearly the hypotheses she should use, find the largest critical region for this test such that the probability in each "tail" is less than 2.5%.	
			(6 marks)
	(c)	State the significance level of this test.	(1 mark)
3.	play varia	n old computer game a white square representing a ball appears at random at ing area, which is 24 cm wide, and moves down the screen. The continuous rable X represents the distance, in centimetres, of the dot from the left-hand ec en when it appears. The distribution of X is rectangular over the interval [4, 2]	andom lge of the
	(a)	Find the mean and variance of <i>X</i> .	(3 marks)
	<i>(b)</i>	Find $P(X-16 < 3)$.	(3 marks)
	Dur	ng a single game, a player receives 12 "balls".	
	(c)	Find the probability that the ball appears within 3 cm of the middle of the t the playing area more than four times in a single game.	op edge of

(3 marks)

- 4. A music website is visited by an average of 30 different people per hour on a weekday evening. The site's designer believes that the number of visitors to the site per hour can be modelled by a Poisson distribution.
 - (a) State the conditions necessary for a Poisson distribution to be applicable and comment on their validity in this case.

(3 mark)

Assuming that the number of visitors does follow a Poisson distribution, find the probability that there will be

<i>(b)</i>	less than two visitors in a 10-minute interval,	(3 marks)
(c)	at least ten visitors in a 15-minute interval.	(3 marks)

(d) Using a suitable approximation, find the probability of the site being visited by more than 100 people between 6 pm and 9 pm on a Thursday evening.

(5 marks)

- 5. Four coins are flipped together and the random variable *H* represents the number of heads obtained. Assuming that the coins are fair,
 - (a) suggest with reasons a suitable distribution for modelling H and give the value of any parameters needed,

(4 marks)

(b) show that the probability of obtaining more heads than tails is $\frac{5}{16}$. (4 marks)

The four coins are flipped 5 times and more heads are obtained than tails 4 times.

(c) Stating your hypotheses clearly, test at the 5% level of significance whether or not there is evidence of the probability of getting more heads than tails being more than $\frac{5}{16}$.

(5 marks)

Given that the four coins are all biased such that the chance of each one showing a head is 50% more than the chance of it showing a tail,

(d) find the probability of obtaining more heads than tails when the four coins are flipped together.

(4 marks)

Turn over

6. The continuous random variable *X* has the following probability density function:

$$f(x) = \begin{cases} \frac{1}{16}x, & 2 \le x \le 6, \\ 0, & \text{otherwise.} \end{cases}$$

(a)	Sketch $f(x)$ for all values of x .	(2 marks)
<i>(b)</i>	Find E(X).	(3 marks)
(c)	Show that $\operatorname{Var}(X) = \frac{11}{9}$.	(5 marks)
(d)	Define fully the cumulative distribution function $F(x)$ of <i>X</i> .	(4 marks)
(e)	Show that the interquartile range of <i>X</i> is $2(\sqrt{7} - \sqrt{3})$.	(5 marks)