GCE Examinations

Advanced Subsidiary / Advanced Level

Statistics

Module S2

Paper E

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

S2 Paper E - Marking Guide

1. (a) advantage - e.g. more accurate B
disadvantage - e.g. takes longer B1
(b) e.g. getting views of shop staff on changing opening hours as small no. involved and will affect all so need views of all B2
2. (a) let $X=$ no. of bags in F.P. with scratchcard $\therefore X \sim \mathrm{~B}\left(10, \frac{1}{10}\right)$
$\mathrm{P}(X=0)=0.3487$ A1
(b) $\mathrm{P}(X>2)=1-\mathrm{P}(X \leq 2)=1-0.9298=0.0702$ M1 A1
(c) let $Y=$ no. of bags in box with scratchcard $\therefore Y \sim \mathrm{~B}\left(50, \frac{1}{10}\right)$
$\mathrm{H}_{0}: p=\frac{1}{10} \quad \mathrm{H}_{1}: p<\frac{1}{10}$ B1
$\mathrm{P}(X \leq 2)=0.1117$ M1
more than $10 \% \quad \therefore$ not significant, insufficient evidence of lower prop ${ }^{\mathrm{n}} \quad$ A1
3. (a) continuous uniform
(b) $\mathrm{F}(t)=\int_{-4}^{t} \frac{1}{8} \mathrm{~d} x$ M1
$=\frac{1}{8}[x]_{-4}^{t}=\frac{1}{8}(t+4)$
M1 A1
$\mathrm{F}(x)= \begin{cases}0, & x<-4, \\ \frac{1}{8}(x+4), & -4 \leq x \leq 4, \\ 1, & x>4 .\end{cases}$
A1
(c) $=\mathrm{P}\left({ }^{-} 1.5 \leq x \leq 1.5\right)$

M1
$=3 \times \frac{1}{8}=\frac{3}{8}$
M1 A1
(d) e.g. gives zero prob. of more than 4 cm error and doesn't suggest higher prob. density near 0 as would be likely

B2
4. (a) binomial, $n=10, p=\frac{1}{2}$
(b) $\quad p$ would vary
(c) (i) let $X=$ no. of blue beads $\therefore X \sim \mathrm{~B}\left(10, \frac{1}{2}\right)$
(ii) let $Y=$ no. of red beads $\therefore Y \sim \mathrm{~B}\left(10, \frac{1}{8}\right)$

$$
\begin{aligned}
\mathrm{P}(X>0) & =1-\mathrm{P}(X=0) \\
& =1-\left(\frac{7}{8}\right)^{10}=0.7369(4 \mathrm{sf})
\end{aligned}
$$

(d) let $R=$ no. of red beads in n picks $\therefore R \sim \mathrm{~B}\left(n, \frac{1}{8}\right)$

$$
\begin{equation*}
\mathrm{P}(R>0)>0.99 \quad \therefore \mathrm{P}(R=0)<0.01 \quad \therefore\left(\frac{7}{8}\right)^{n}<\frac{1}{100} \quad \mathrm{M} 2 \mathrm{~A} 1 \tag{12}
\end{equation*}
$$

5. (a) let $X=$ no. of donations over $£ 10000$ per year $\therefore X \sim \operatorname{Po}(25)$
$\mathrm{P}(X=30)=\frac{\mathrm{e}^{-25} \times 25^{30}}{30!}=0.0454(3 \mathrm{sf})$
M1 A1
(b) let $Y=$ no. of donations over $£ 10000$ per month $\therefore Y \sim \operatorname{Po}\left(\frac{25}{12}\right)$

$$
\begin{aligned}
\mathrm{P}(Y<3) & =\mathrm{P}(Y \leq 2) \\
& =\mathrm{e}^{-\frac{25}{12}}\left(1+\frac{25}{12}+\frac{\left(\frac{25}{12}\right)^{2}}{2}\right) \\
& =0.6541(4 \mathrm{sf})
\end{aligned}
$$

(c) let $D=$ no. of donations over $£ 10000$ per 2 years $\therefore D \sim \operatorname{Po}(50)$

N approx. $E \sim \mathrm{~N}(50,50)$

$$
\mathrm{P}(D>45) \approx \mathrm{P}(E>45.5)
$$

$$
=\mathrm{P}\left(Z>\frac{45.5-50}{\sqrt{50}}\right)=\mathrm{P}(Z>-0.64)
$$

$$
=0.7389
$$

6. (a) $=\mathrm{P}(T>2)=1-\mathrm{F}(2)$

M1
$=1-\frac{1}{135}(108+36-32)=\frac{23}{135}$
M1 A1
(b) $\mathrm{F}(m)=\frac{1}{2}$

M1
$\mathrm{F}(1.1)=0.4812 ; \quad \mathrm{F}(1.2)=0.5248$
M1
$\therefore 1.1<m<1.2 \therefore$ median between 11 and 12 minutes
A1
(c) $\mathrm{f}(t)=\mathrm{F}^{\prime}(t)=\frac{1}{135}\left(54+18 t-12 t^{2}\right)$
$\mathrm{f}(t)= \begin{cases}\frac{2}{45}\left(9+3 t-2 t^{2}\right), & 0 \leq t \leq 3, \\ 0, & \text { otherwise. }\end{cases}$
(d) $\quad \mathrm{f}^{\prime}(t)=\frac{2}{45}(3-4 t)$
S.P. when $\mathrm{f}^{\prime}(t)=0 \quad \therefore t=\frac{3}{4}$
some justification e.g. - ve quadratic \therefore mode $=\frac{3}{4} \times 10=7.5 \mathrm{mins}$
(e) e.g. assumes patients never wait for more than 30 mins
7. (a) Poisson
e.g. reasonable to suggest bicycles passing will occur singly, at random and at constant rate
(b) $n=36, \Sigma \mathrm{f} x=54, \therefore$ mean $=\frac{54}{36}=1.5$
$\Sigma \mathrm{fx}^{2}=0+14+40+18+16+50=138$
variance $=\frac{138}{36}-1.5^{2}=1.58(3 \mathrm{sf})$
values support Poisson as expect mean \approx variance
(c) let $X=$ no. of bicycles passing per 30-mins $\therefore X \sim \operatorname{Po}(9)$
$\mathrm{H}_{0}: \lambda=9 \quad \mathrm{H}_{1}: \lambda>9$
$\mathrm{P}(X \geq 16)=1-\mathrm{P}(X \leq 15)$

$$
=1-0.9780=0.0220
$$

less than $5 \% \quad \therefore$ significant, evidence of more bicycles

M1

B1 (14)
B1 (14)

B2
M1 A1
A1
M1 A1
B1
M1
B1
M1
M1 A1
A1

M1
M1 A1

B1

A1

A1
A1

Performance Record-S2 Paper E

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	sampling	binomial, hyp. test	rect. dist., c.d.f.	binomial	Poisson, N approx.	$\begin{array}{\|l} \hline \text { c.d.f.f. } \\ \text { median, } \\ \text { p.d.f. }, \\ \text { mode } \end{array}$	Poisson,	
Marks	4	8	10	12	13	14	14	75
Student								

