GCE Examinations

Advanced Subsidiary / Advanced Level

Statistics

Module S2

Paper D

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

S2 Paper D - Marking Guide

1. (a) $\mathrm{F}(5)=1$ M1
$k(95-25-34)=1 ; 36 k=1 \quad \therefore k=\frac{1}{36} \quad \mathrm{~A} 1$
(b) $\mathrm{P}(X>4)=1-\mathrm{F}(4) \quad$ M1

$$
=1-\frac{1}{36}(76-16-34)=\frac{5}{18} \quad \text { A1 }
$$

(c) $\mathrm{f}(x)=\mathrm{F}^{\prime}(x)=\frac{1}{36}(19-2 x)$

M1 A1
$\therefore \mathrm{f}(x)= \begin{cases}\frac{1}{36}(19-2 x), & 2 \leq x \leq 5, \\ 0, & \text { otherwise. }\end{cases}$
A1
(7)
2. (a) Poisson

B1
e.g. J occurs singly, at random, at constant rate B2
(b) continuous uniform B1
e.g. initial lengths random \therefore equal chance of any length 0 to 3 left over B2
(c) binomial B1
e.g. fixed no. of spins, two outcomes, fixed prob. of head B2
(9)
3. (a) $\mathrm{H}_{0}: p=\frac{1}{2} \quad \mathrm{H}_{1}: p \neq \frac{1}{2}$

B1
(b) let $X=$ no. with mobile phones $\therefore X \sim \mathrm{~B}\left(25, \frac{1}{2}\right)$ M1
$\mathrm{P}(X \leq 7)=0.0216 ; ~ \mathrm{P}(X \leq 17)=0.9784$
M1 A1
\therefore C.R. is $X \leq 7$ or $X \geq 18$
A1
(c) $0.0216+0.0216=0.0432$

A1
(d) $\mathrm{H}_{0}: p=\frac{1}{2} \quad \mathrm{H}_{1}: p<\frac{1}{2}$

B1
$\mathrm{P}(X \leq 8)=0.0539$
M1
more than $5 \% \quad \therefore$ not significant A1
(9)
4. (a) let $X=$ no. of sales per week $\therefore X \sim \operatorname{Po}(8)$
$\mathrm{P}(X \leq 4)=0.0996$
A1
(b) let $Y=$ no. of sales per day $\therefore Y \sim \operatorname{Po}\left(\frac{4}{3}\right)$
$\mathrm{P}(Y>2)=1-\mathrm{P}(Y \leq 2)$
$=1-\mathrm{e}^{-\frac{4}{3}}\left(1+\frac{4}{3}+\frac{\left(\frac{4}{3}\right)^{2}}{2}\right)$

$$
=1-0.8494=0.1506(4 \mathrm{sf})
$$

M1 A1
A1
(c) $\quad \mathrm{P}(X \leq 12)=0.9362 ; ~ \mathrm{P}(X \leq 13)=0.9658$

M1 A1
\therefore need 13 in stock
A1
(10)
5. (a) $13 \times \frac{1}{90}=\frac{13}{90}$ or 0.1444 (4sf)

M1 A1
(b) $\mathrm{P}\left(44.5^{\circ}\right.$ to $\left.45.5^{\circ}\right) \therefore \frac{1}{90}$

M1 A1
(c) $\mathrm{P}\left(<10^{\circ}\right)=10 \times \frac{1}{90}=\frac{1}{9}$

A1
let $X=$ no. of times $<10^{\circ} \therefore X \sim \mathrm{~B}\left(10, \frac{1}{9}\right)$
M1
$\mathrm{P}(X>2)=1-\mathrm{P}(X \leq 2)$
M1

$$
=1-\left[\left(\frac{8}{9}\right)^{10}+10\left(\frac{1}{9}\right)\left(\frac{8}{9}\right)^{9}+\frac{10 \times 9}{2}\left(\frac{1}{9}\right)^{2}\left(\frac{8}{9}\right)^{8}\right]
$$

$$
\begin{equation*}
=1-0.9094=0.0906(3 \mathrm{sf}) \tag{10}
\end{equation*}
$$

6. (a) let $X=$ no. absent per lesson $\therefore X \sim \operatorname{Po}(2.5)$
$\mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)=1-0.9580=0.0420$ M1 A1
(b) assumes absences occur independently and at constant rate ill students may infect others and rate may vary at different times of year but assumptions fairly reasonable B3
(c) registers for all classes

B1
(d) let $Y=$ no. absent per 30 lessons $\therefore Y \sim \operatorname{Po}(75)$

M1
use N approx. $A \sim \mathrm{~N}(75,75)$
M1
$\mathrm{P}(Y \geq 96) \approx \mathrm{P}(A>95.5)$
M1
$=\mathrm{P}\left(Z>\frac{95.5-75}{\sqrt{75}}\right)=\mathrm{P}(Z>2.367)$

$$
=1-0.9909=0.0091
$$

A1
A1
less than $5 \% \quad \therefore$ significant, there is evidence of more absent per lesson A1
7. (a) $\int_{0}^{3} k(t-3)^{2} \mathrm{~d} t=1$

M1
$k \int_{0}^{3} t^{2}-6 t+9 \mathrm{~d} t=1$
M1
$\therefore k\left[\frac{1}{3} t^{3}-3 t^{2}+9 t\right]_{0}^{3}=1$
$\therefore k[(9-27+27)-(0)]=1 ; 9 k=1 ; k=\frac{1}{9}$
A1
M1 A1
(b)

(c) $\mathrm{E}(T)=\int_{0}^{3} t \times \frac{1}{9}(t-3)^{2} \mathrm{~d} t=\frac{1}{9} \int_{0}^{3} t^{3}-6 t^{2}+9 t \mathrm{~d} t$

$$
\begin{aligned}
& =\frac{1}{9}\left[\frac{1}{4} t^{4}-2 t^{3}+\frac{9}{2} t^{2}\right]_{0}^{3} \\
& =\frac{1}{9}\left[\left(\frac{81}{4}-54+\frac{81}{2}\right)-(0)\right]=\frac{3}{4}
\end{aligned}
$$

\therefore mean time $=\frac{3}{4} \times 10=7.5 \mathrm{~s}$ M1 A1 M1 A1 A1
(d) $\mathrm{E}(S)=\int_{0}^{2} s \times \frac{1}{12}\left(8-s^{3}\right) \mathrm{d} s=\frac{1}{12} \int_{0}^{2} 8 s-s^{4} \mathrm{~d} s$
$=\frac{1}{12}\left[4 s^{2}+\frac{1}{5} s^{5}\right]_{0}^{2}$
$=\frac{1}{12}\left[\left(16-\frac{32}{5}\right)-(0)\right]=\frac{4}{5}$
\therefore new mean $=\frac{4}{5} \times 10=8 \mathrm{~s} \quad \therefore$ increased by 0.5 s

A1
M1 A1
A1

Performance Record - S2 Paper D

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	$\begin{array}{\|l\|l\|} \hline \text { c.d.f.f., } \\ \text { p.d.f. } \end{array}$	modelling	$\begin{aligned} & \begin{array}{l} \text { binomial, } \\ \text { hyp. test } \end{array} \end{aligned}$	Poisson	$\begin{aligned} & \text { rect. dist., } \\ & \text { binomial } \end{aligned}$	Poisson, hyp. test., sampling, N approx	$\begin{aligned} & \text { p.d.f.f, } \\ & \text { mean } \end{aligned}$	
Marks	7	9	9	10	10	12	18	75
Student								

