## GCE Examinations

## Statistics Module S2

## Advanced Subsidiary / Advanced Level

## Paper B

Time: 1 hour 30 minutes

## Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 6 questions.

Advice to Candidates
You must show sufficient working to make your methods clear to an examiner.
Answers without working will gain no credit.


Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

1. (a) Explain what you understand by the term sampling frame when conducting a sample survey.
(b) Suggest a suitable sampling frame and identify the sampling units when using a sample survey to study
(i) the frequency with which cars break down in the first 3 months after being serviced at a particular garage,
(ii) the weight loss of people involved in trials of a new dieting programme.
(4 marks)
2. An ornithologist believes that on average 4.2 different species of bird will visit a bird table in a rural garden when 50 g of breadcrumbs are spread on it.
(a) Suggest a suitable distribution for modelling the number of species that visit a bird table meeting these criteria.
(b) Explain why the parameter used with this model may need to be changed if
(i) 50 g of nuts are used instead of breadcrumbs,
(ii) 100 g of breadcrumbs are used.

A bird table in a rural garden has 50 g of breadcrumbs spread on it.
Find the probability that
(c) exactly 6 different species visit the table,
(d) more than 2 different species visit the table.
3. In a test studying reaction times, white dots appear at random on a black rectangular screen. The continuous random variable $X$ represents the distance, in centimetres, of the dot from the left-hand edge of the screen. The distribution of $X$ is rectangular over the interval [0, 20].
(a) Find $\mathrm{P}(2<X<3.6)$.
(b) Find the mean and variance of $X$.

The continuous random variable $Y$ represents the distance, in centimetres, of the dot from the bottom edge of the screen. The distribution of $Y$ is rectangular over the interval $[0,16]$.

Find the probability that a dot appears
(c) in a square of side 4 cm at the centre of the screen,
(d) within 2 cm of the edge of the screen.
4. It is believed that the number of sets of traffic lights that fail per hour in a particular large city follows a Poisson distribution with a mean of 3 .

Find the probability that
(a) there will be no failures in a one-hour period,
(b) there will be more than 4 failures in a 30 -minute period.

Using a suitable approximation, find the probability that in a 24 -hour period there will be
(c) less than 60 failures,
(d) exactly 72 failures.
5. Six standard dice with faces numbered 1 to 6 are thrown together.

Assuming that the dice are fair, find the probability that
(a) none of the dice show a score of 6 ,
(b) more than one of the dice shows a score of 6 ,
(c) there are equal numbers of odd and even scores showing on the dice.

One of the dice is suspected of being biased such that it shows a score of 6 more often than the other numbers. This die is thrown eight times and gives a score of 6 three times.
(d) Stating your hypotheses clearly, test at the 5\% level of significance whether or not this die is biased towards scoring a 6 .
(7 marks)
6. The continuous random variable $X$ has the following probability density function:

$$
\mathrm{f}(x)= \begin{cases}\frac{1}{6} x, & 0 \leq x \leq 2 \\ \frac{1}{12}(6-x), & 2 \leq x \leq 6 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Sketch $\mathrm{f}(x)$ for all values of $x$.
(b) State the mode of $X$.
(c) Define fully the cumulative distribution function $\mathrm{F}(x)$ of $X$.
(d) Show that the median of $X$ is 2.536 , correct to 4 significant figures.

## END

