GCE Examinations

Mechanics Module M3

Advanced Subsidiary / Advanced Level

Paper F

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.

Mathematical and statistical formulae and tables are available.

This paper has 6 questions.

When a numerical value of g is required, use $g = 9.8 \text{ m s}^{-2}$.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Shaun Armstrong & Chris Huffer © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

- 1. A particle P of mass 1.5 kg moves from rest at the origin such that at time t seconds it is subject to a single force of magnitude (4t + 3) N in the direction of the positive x-axis.
 - (a) Find the magnitude of the impulse exerted by the force during the interval $1 \le t \le 4$.

(3 marks)

Given that at time *T* seconds, *P* has a speed of 22 m s^{-1} ,

(b) find the value of T correct to 3 significant figures.

(5 marks)

Fig. 1

A particle P of mass 0.5 kg is at rest at the highest point A of a smooth sphere, centre O, of radius 1.25 m which is fixed to a horizontal surface.

When *P* is slightly disturbed it slides along the surface of the sphere. Whilst *P* is in contact with the sphere it has speed $v \text{ m s}^{-1}$ when $\angle AOP = \theta$ as shown in Figure 1.

(a) Show that $V = 24.3(1 - \cos \theta)$. (5 marks)	(a)	Show that $v^2 = 24.5(1 - \cos \theta)$.	(3 marks)
---	-----	---	-----------

(b) Find the value of $\cos \theta$ when P leaves the surface of the sphere. (5 marks)

3. A car starts from rest at the point O and moves along a straight line. The car accelerates to a maximum velocity, $V \text{ m s}^{-1}$, before decelerating and coming to rest again at the point A.

The acceleration of the car during this journey, $a \text{ m s}^{-2}$, is modelled by the formula

$$a=\frac{500-kx}{150},$$

where x is the distance in metres of the car from O.

4.

Using this model and given that the car is travelling at 16 m s^{-1} when it is 40 m from O,

(a)	find k,	(6 marks)
<i>(b)</i>	show that $V = 41$, correct to 2 significant figures,	(3 marks)
(c)	find the distance OA.	(3 marks)

Fig. 2

A particle *P* of mass 2 kg is attached to one end of a light elastic string of natural length 1.5 m and modulus of elasticity λ . The other end of the string is fixed to a point *A* on a rough plane inclined at an angle of 30° to the horizontal as shown in Figure 2. The coefficient of friction between *P* and the plane is $\frac{1}{6}\sqrt{3}$.

P is held at rest at *A* and then released. It first comes to instantaneous rest at the point *B*, 2.2 m from *A*. For the motion of *P* from *A* to *B*,

(a)	show that the work done against friction is 10.78 J,	(5 marks)	
<i>(b)</i>	find the change in the gravitational potential energy of <i>P</i> .	(2 marks)	
By using the work-energy principle, or otherwise,			
(c)	find λ .	(5 marks)	

Turn over

Fig. 3

A flask is modelled as a uniform solid formed by removing a cylinder of radius r and height h from a cylinder of radius $\frac{4}{3}r$ and height $\frac{3}{2}h$ with the same axis of symmetry and a common plane as shown in Figure 3.

Show that the centre of mass of the flask is a distance of $\frac{9}{10}h$ from the open end of the (a)flask.

(7 marks)

The flask is made from a material of density ρ and is filled to the level of the open plane face with a liquid of density $k\rho$. Given that the centre of mass of the flask and liquid together is a distance of $\frac{15}{22}h$ from the open end of the flask,

	(b)	find	the	value	ofk
1	(D)	IIIIa	une	value	OI K.

5.

Explain why it may be advantageous to make the base of the flask from a more dense (c) material.

(2 marks)

(7 marks)

6. A particle P of mass 2.5 kg is moving with simple harmonic motion in a straight line between two points A and B on a smooth horizontal table. When P is 3 m from O, the centre of the oscillations, its speed is 6 m s^{-1} . When P is 2.25 m from O, its speed is 8 m s^{-1} .

(a)	Show that $AB = 7.5$ m.	(8 marks)
<i>(b)</i>	Find the period of the motion.	(4 marks)
(c)	Find the kinetic energy of P when it is 2.7 m from A .	(3 marks)
(d)	Show that the time taken by P to travel directly from A to the midpoint of	OB is

 $\frac{\pi}{2}$ seconds. (4 marks) 4

END