GCE Examinations

Mechanics Module M3

Advanced Subsidiary / Advanced Level

Paper F

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 6 questions.
When a numerical value of g is required, use $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. A particle P of mass 1.5 kg moves from rest at the origin such that at time t seconds it is subject to a single force of magnitude $(4 t+3) \mathrm{N}$ in the direction of the positive x-axis.
(a) Find the magnitude of the impulse exerted by the force during the interval $1 \leq t \leq 4$.

Given that at time T seconds, P has a speed of $22 \mathrm{~m} \mathrm{~s}^{-1}$,
(b) find the value of T correct to 3 significant figures.
2.

Fig. 1
A particle P of mass 0.5 kg is at rest at the highest point A of a smooth sphere, centre O, of radius 1.25 m which is fixed to a horizontal surface.

When P is slightly disturbed it slides along the surface of the sphere. Whilst P is in contact with the sphere it has speed $v \mathrm{~m} \mathrm{~s}^{-1}$ when $\angle A O P=\theta$ as shown in Figure 1.
(a) Show that $v^{2}=24.5(1-\cos \theta)$.
(b) Find the value of $\cos \theta$ when P leaves the surface of the sphere.
3. A car starts from rest at the point O and moves along a straight line. The car accelerates to a maximum velocity, $V \mathrm{~m} \mathrm{~s}^{-1}$, before decelerating and coming to rest again at the point A.

The acceleration of the car during this journey, $a \mathrm{~m} \mathrm{~s}^{-2}$, is modelled by the formula

$$
a=\frac{500-k x}{150},
$$

where x is the distance in metres of the car from O.
Using this model and given that the car is travelling at $16 \mathrm{~m} \mathrm{~s}^{-1}$ when it is 40 m from O,
(a) find k,
(b) show that $V=41$, correct to 2 significant figures,
(c) find the distance $O A$.
4.

Fig. 2
A particle P of mass 2 kg is attached to one end of a light elastic string of natural length 1.5 m and modulus of elasticity λ. The other end of the string is fixed to a point A on a rough plane inclined at an angle of 30° to the horizontal as shown in Figure 2. The coefficient of friction between P and the plane is $\frac{1}{6} \sqrt{ }$.
P is held at rest at A and then released. It first comes to instantaneous rest at the point $B, 2.2 \mathrm{~m}$ from A. For the motion of P from A to B,
(a) show that the work done against friction is 10.78 J ,
(b) find the change in the gravitational potential energy of P.

By using the work-energy principle, or otherwise,
(c) find λ.
5.

Fig. 3
A flask is modelled as a uniform solid formed by removing a cylinder of radius r and height h from a cylinder of radius $\frac{4}{3} r$ and height $\frac{3}{2} h$ with the same axis of symmetry and a common plane as shown in Figure 3.
(a) Show that the centre of mass of the flask is a distance of $\frac{9}{10} h$ from the open end of the flask.

The flask is made from a material of density ρ and is filled to the level of the open plane face with a liquid of density $k \rho$. Given that the centre of mass of the flask and liquid together is a distance of $\frac{15}{22} h$ from the open end of the flask,
(b) find the value of k.
(c) Explain why it may be advantageous to make the base of the flask from a more dense material.
(2 marks)
6. A particle P of mass 2.5 kg is moving with simple harmonic motion in a straight line between two points A and B on a smooth horizontal table. When P is 3 m from O, the centre of the oscillations, its speed is $6 \mathrm{~m} \mathrm{~s}^{-1}$. When P is 2.25 m from O, its speed is $8 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Show that $A B=7.5 \mathrm{~m}$.
(b) Find the period of the motion.
(c) Find the kinetic energy of P when it is 2.7 m from A.
(d) Show that the time taken by P to travel directly from A to the midpoint of $O B$ is $\frac{\pi}{4}$ seconds.
(4 marks)

END

