GCE Examinations

Advanced Subsidiary / Advanced Level

Mechanics
 Module M3

Paper E

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

M3 Paper E - Marking Guide

1. (a) $\mathbf{a}=\frac{\mathrm{d}}{\mathrm{d} t}(\mathbf{v})=\left(2 \mathrm{e}^{2 t} \mathbf{i}+2 \mathbf{j}\right) \mathrm{cms}^{-2} \quad$ M1 A1
(b) $2 \mathrm{e}^{2 t} \mathbf{i}+2 \mathbf{j}=k(4 \mathbf{i}+\mathbf{j})$, comparing \mathbf{j} components, $k=2$

M1 A1
$\therefore 2 \mathrm{e}^{2 t}=8, t=\frac{1}{2} \ln 4=0.69 \mathrm{~s}(2 \mathrm{sf})$
M1 A1
(c) e.g. predicts \mathbf{v}, \mathbf{a} increasing to very large values

B1
2. (a) work done $=\int_{0}^{1} 5+4 \mathrm{e}^{-x} \mathrm{~d} x=\left[5 x-4 \mathrm{e}^{-x}\right]_{0}^{1}$

$$
=\left(5-4 \mathrm{e}^{-1}\right)-(0-4)=9-4 \mathrm{e}^{-1}=7.53 \mathrm{~J}(3 \mathrm{sf})
$$

M1 A1
(b) work done $=$ change in KE

M1
$\therefore 9-4 \mathrm{e}^{-1}=\frac{1}{2} \times 0.4 \times\left(v^{2}-2^{2}\right)$
giving $v=6.45 \mathrm{~ms}^{-1}(3 \mathrm{sf})$
M1 A1
A1 (8)
3. (a)

resolve $\uparrow: T \cos 60^{\circ}-m g=0$
M1
$\therefore \frac{1}{2} T=0.1 \times 9.8$
A1
giving $T=1.96 \mathrm{~N} \quad$ A1
(b) resolve $\leftarrow: T \sin 60^{\circ}=m r \omega^{2}$

M1 A1
let length of string $=l \therefore r=l \sin 60^{\circ}$ so $1.96=0.1 \times l \times 4^{2}$
giving $l=1.225 \mathrm{~m}$
M1 A1
A1
(8)
4. (a) $\ddot{x}={ }^{-} \omega^{2} x \quad \therefore 0.12=\left|-\omega^{2} \times 0.03\right|$ giving $\omega=2$

M1 A1
period $=\frac{2 \pi}{\omega}=\pi$ seconds
M1 A1
(b) $\quad v^{2}=\omega^{2}\left(a^{2}-x^{2}\right) \quad \therefore 0.08^{2}=2^{2}\left(a^{2}-0.03^{2}\right)$

M1 A1
giving $a=0.05 \mathrm{~m}$ or 5 cm
A1
(c) $v_{\max }=\omega a=2 \times 0.05=0.1 \mathrm{~ms}^{-1}$ or $10 \mathrm{cms}^{-1}$

M1 A1 (9)
5. (a) by symmetry

B1
(b) A

by Pythag. distance of object from $A=1.25$
M1
$T=\frac{\lambda x}{l}=\frac{280 \times 0.25}{1}=70$
M1 A1
resolve $\uparrow: 2 T \sin \alpha-m g=0$
M1 A1
$\sin \alpha=\frac{7}{25} \quad \therefore 2 \times 70 \times \frac{7}{25}=m \times 9.8$
giving $m=4 \mathrm{~kg}$
A1
(c) $\mathrm{EPE}=2 \times \frac{\lambda x^{2}}{2 l}=2 \times \frac{280 \times 0.25^{2}}{2 \times 1}=17.5 \mathrm{~J}$

M1 A1
6. (a) $\bar{x} \times \int_{0}^{1} \rho \pi y^{2} \mathrm{~d} x=\int_{0}^{1} \rho \pi y^{2} x \mathrm{~d} x \quad \therefore \bar{x} \times \int_{0}^{1} y^{2} \mathrm{~d} x=\int_{0}^{1} y^{2} x \mathrm{~d} x$

$$
\begin{array}{rlrl}
\int_{0}^{1} y^{2} \mathrm{~d} x & =\int_{0}^{1}\left(x^{2}+1\right)^{2} \mathrm{~d} x=\int_{0}^{1}\left(x^{4}+2 x^{2}+1\right) \mathrm{d} x & & \text { M1 A1 } \\
& =\left[\frac{1}{5} x^{5}+\frac{2}{3} x^{3}+x\right]_{0}^{1}=\frac{28}{15} & & \text { M1 A1 } \\
\int_{0}^{1} y^{2} x \mathrm{~d} x & =\int_{0}^{1} x\left(x^{2}+1\right)^{2} \mathrm{~d} x=\int_{0}^{1}\left(x^{5}+2 x^{3}+x\right) \mathrm{d} x & & \text { M1 } \\
& =\left[\frac{1}{6} x^{6}+\frac{1}{2} x^{4}+\frac{1}{2} x^{2}\right]_{0}^{1}=\frac{7}{6} & & \text { M1 A1 } \\
\therefore \bar{x}=\frac{7}{6} \div \frac{28}{15}=\frac{5}{8}, \bar{y}=0 \text { by symmetry } \therefore \text { coords are }\left(\frac{5}{8}, 0\right) & & \text { M1 A1 }
\end{array}
$$

(b)

$\tan \alpha=\frac{1-\frac{5}{8}}{2}=\frac{3}{16}$
$\therefore \alpha=11^{\circ}$ (nearest degree)
M1 A1
A1
7.

Performance Record - M3 Paper E

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	variable accel.	$\begin{array}{\|l} \hline \begin{array}{l} \text { variable } \\ \text { force, } \\ \text { work } \\ \text { done } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { circular } \\ & \text { motion } \end{aligned}$	SHM	$\begin{aligned} & \hline \text { elastic } \\ & \text { string, } \\ & \text { sPE } \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { centre of } \\ \text { mass by } \\ \text { interg., } \\ \text { equilm. } \end{array} \end{aligned}$	motion in a vertic circle	
Marks	7	8	8	9	10	13	20	75
Student								

