GCE Examinations

Advanced Subsidiary / Advanced Level

Mechanics
 Module M3

Paper C

MARKING GUIDE

Abstract

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

M3 Paper C - Marking Guide

$$
\begin{array}{ll}
\mathrm{EPE}=\frac{\lambda x^{2}}{2 l}=\frac{4 m g x^{2}}{2 a} & \text { M1 A1 } \\
\text { con. of ME: } m g(a+x)=\frac{4 m g x^{2}}{2 a} & \text { M1 A1 } \\
\therefore a(a+x)=2 x^{2} \text { giving } 2 x^{2}-a x-a^{2}=0 & \text { A1 } \\
\quad(2 x+a)(x-a)=0 \therefore x=-\frac{1}{2} a \text { or } a & \text { M1 } \\
\quad x>0 \therefore x=a \text { so } A B=2 a & \text { A1 }
\end{array}
$$

2.

(a) $\mathbf{a}=\frac{\mathrm{d}}{\mathrm{d} t}(\mathbf{v})=\left(\frac{1}{t+1} \mathbf{i}+2 \mathrm{e}^{-2 t} \mathbf{j}\right) \mathrm{ms}^{-2}$

M1 A2
(b) $t=1, \mathbf{a}=\frac{1}{2} \mathbf{i}+2 \mathrm{e}^{-2} \mathbf{j}$ M1
$|\mathbf{a}|=\sqrt{ }\left(\frac{1}{4}+4 \mathrm{e}^{-4}\right)=0.5686$
M1 A1
$F=m a=0.25 \times 0.5686=0.142 \mathrm{~N}(3 \mathrm{sf})$
A1
3.

$$
\begin{aligned}
& \omega=\frac{45}{60} \times 2 \pi=\frac{3}{2} \pi \\
& v=\omega r=\frac{3}{2} \pi \times 0.1=\frac{3}{20} \pi \text { or } 0.47 \mathrm{~ms}^{-1}(2 \mathrm{sf})
\end{aligned}
$$

M1
A1
(b) resolve $\uparrow: R-m g=0 \quad \therefore R=0.005 \times 9.8=0.049 \mathrm{~N}$
resolve $\leftarrow: F=m a=m r \omega^{2}=0.005 \times 0.1 \times\left(\frac{3}{2} \pi\right)^{2}=0.011 \mathrm{~N}(2 \mathrm{sf})$
M1 A1
\therefore horiz. and vert. components are 0.011 N and 0.049 N respectively
(c) limiting friction $\therefore F=\mu R$

M1
$0.01110=0.049 \mu \quad \therefore \mu=\frac{0.01110}{0.049}=0.23(2 \mathrm{sf})$
M1 A1
4. (a)

portion	mass	y	$m y$
large cone	$\rho \frac{1}{3} \pi(3 r)^{2} 3 h=9 \rho \pi r^{2} h$	$\frac{1}{4} \times 3 h=\frac{3}{4} h$	$\frac{27}{4} \rho \pi r^{2} h^{2}$
small cone	$\rho \frac{1}{3} \pi(2 r)^{2} 2 h=\frac{8}{3} \rho \pi r^{2} h$	$h+\frac{1}{4} \times 2 h=\frac{3}{2} h$	$4 \rho \pi r^{2} h^{2}$
frustrum	$\frac{19}{3} \rho \pi r^{2} h$	\bar{y}	$\frac{11}{4} \rho \pi r^{2} h^{2}$

$\rho=$ mass per unit volume $\quad y$ coords. taken vert. from base
M2 A3
$\frac{19}{3} \rho \pi r^{2} h \times \bar{y}=\frac{11}{4} \rho \pi r^{2} h^{2} \quad \therefore \bar{y}=\frac{11}{4} h \div \frac{19}{3}=\frac{33}{76} h$
(b)

$\tan \alpha=\frac{\frac{33}{76} \times 2 r}{3 r}=\frac{11}{38}$
$\therefore \alpha=16^{\circ}$ (nearest degree)
5. (a) $F=m a=0.8 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\frac{k}{x^{2}}$
$\therefore \int 4 v \mathrm{~d} v=\int-\frac{5 k}{x^{2}} \mathrm{~d} x$
giving $2 v^{2}=\frac{5 k}{x}+c$
$x=2, v=5 \quad \therefore 50=\frac{5 k}{2}+c$
M1 A1
$x=4, v=3 \therefore 18=\frac{5 k}{4}+c$
M1
solve simul. $32=k\left(\frac{5}{2}-\frac{5}{4}\right)=\frac{5}{4} k$
M1
$\therefore k=\frac{32 \times 4}{5}=\frac{128}{5}$
(b) $c=50-\frac{5 k}{2}={ }^{-} 14 \therefore v^{2}=\frac{64}{x}-7$

M1 A1
rest when $v=0 \quad \therefore \frac{64}{x}=7$ so $x=\frac{64}{7} \mathrm{~m}$
M1 A1
6. (a)

$T_{1}=\frac{\lambda x}{l}=\frac{\lambda(y-3 a)}{3 a}$
M1 A1
$T_{2}=\frac{2 \lambda(5 a-y)}{2 a}$ A1
eqm. $\therefore T_{1}=T_{2}, \frac{\lambda(y-3 a)}{3 a}=\frac{2 \lambda(5 a-y)}{2 a}$ M1
giving $y-3 a=3(5 a-y) \quad \therefore y=\frac{9}{2} a$
(b)

$m \ddot{x}=T_{2}-T_{1}=\frac{2 \lambda\left(\frac{1}{2} a-x\right)}{2 a}-\frac{\lambda\left(\frac{3}{2} a+x\right)}{3 a}=\frac{\lambda}{3 a}\left[\left(\frac{3}{2} a-3 x\right)-\left(\frac{3}{2} a+x\right)\right]$
M2 A2
giving $\ddot{x}=-\frac{4 \lambda}{3 m a} x \therefore$ SHM with $\omega^{2}=\frac{4 \lambda}{3 m a}, \omega=2 \sqrt{\frac{\lambda}{3 m a}}$
M1 A2
period $=\frac{2 \pi}{\omega}=\pi \sqrt{\frac{3 m a}{\lambda}}$
M1 A1
7. (a) just before B, resolve $\downarrow: 60 g-R_{1}=0 \quad \therefore R_{1}=60 g$
just after B, resolve $\downarrow: 60 g-R_{2}=\frac{m \nu^{2}}{r}=\frac{60 \times 12^{2}}{30}=288$
$\therefore R_{2}=60 g-288$ so loss of reaction $=288 \mathrm{~N}$
M1 A1
A1
(b)

$$
\begin{array}{ll}
\text { resolve } \kappa: m g \cos \theta-R=\frac{m v^{2}}{r}=\frac{m v^{2}}{30} & \text { M1 A1 } \\
\text { at } P, R=0 \therefore v^{2}=30 g \cos \theta & \text { M1 } \\
\text { con. of ME: } \frac{1}{2} m\left(v^{2}-12^{2}\right)=m g \times 30(1-\cos \theta) & \text { M1 A1 } \\
\therefore v^{2}=144+60 g(1-\cos \theta) & \text { A1 } \\
\text { combining, } v^{2}=144+60 g\left(1-\frac{v^{2}}{30 g}\right) & \text { M1 } \\
\text { giving } v^{2}=144+60 g-2 v^{2} \therefore 3 v^{2}=144+60 g & \\
\text { so, } v^{2}=48+20 g \therefore v=15.6 \mathrm{~ms}^{-1}(3 \mathrm{sf}) & \text { A1 }
\end{array}
$$

(c) con. of ME: $\frac{1}{2} m\left(v^{2}-12^{2}\right)=m g \times 30$
giving $v^{2}=144+60 g \therefore v=27.1 \mathrm{~ms}^{-1}(3 \mathrm{sf})$

M1 A1
A1

Performance Record - M3 Paper C

Question no.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
Topic(s)	elastic string, EPE	variable accel.	circular motion	centre of mass, equilm.				
Marks	7	7	variable force	elastic spring, SHM				
			motion in a vertical circle					
Student				11	12	14	15	75

