GCE Examinations

Advanced Subsidiary / Advanced Level

Mechanics
 Module M3

Paper B

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

M3 Paper B - Marking Guide

1. (a) $s=\mathrm{e}^{0.3}-1=0.3499 \mathrm{~m}=35 \mathrm{~cm}$ (nearest cm)

M1 A1
(b) $\quad v=\frac{\mathrm{d} s}{\mathrm{~d} t}=3 \mathrm{e}^{3 t}$
when $t=0, v=3 \mathrm{~ms}^{-1}$
M1 A1
A1
(c) $\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}=9 \mathrm{e}^{3 t} \mathrm{~ms}^{-2}$
(d) e.g. model predicts increasing accel., more likely to be decreasing

B1
2. (a)

resolve $\rightarrow: 20-T \sin 30^{\circ}=0 \quad \therefore T=40 \mathrm{~N}$
M1 A2
(b) let natural length be $l \therefore T=\frac{\lambda x}{l}=\frac{80(1.2-l)}{l}$
$T=40 \quad \therefore l=2(1.2-l)$ giving $l=0.8 \mathrm{~m}$
$\mathrm{EPE}=\frac{\lambda x^{2}}{2 l}=\frac{80 \times 0.4^{2}}{2 \times 0.8}=8 \mathrm{~J}$
M1 A1
A1
M1 A1 (8)
3. (a)

$$
\begin{array}{ll}
\sin \alpha=\frac{1}{2} \therefore \alpha=30^{\circ} & \text { M1 } \\
\angle B O A=90+\alpha=120^{\circ} & \text { A1 }
\end{array}
$$

(b)

resolve $\kappa: T-m g \cos \theta=\frac{m \nu^{2}}{r}$ M1
at $B, T=0, \theta=120^{\circ} \therefore v^{2}=\frac{1}{2} g a$
con. of ME: $\frac{1}{2} m\left(u^{2}-v^{2}\right)=m g \times \frac{3}{2} a$
$\therefore v^{2}=u^{2}-3 g a$
combining, $\frac{1}{2} g a=u^{2}-3 g a \quad \therefore u^{2}=\frac{7}{2} g a$
4.
(a)
amplitude $=\frac{1}{2}(14-6)=4 \mathrm{~m}$
B1
period $=2 \times 6 \frac{1}{4}=12 \frac{1}{2}$ hours
B1
(b) $x=a \cos \omega t \quad \therefore{ }^{-} 1=4 \cos \omega t$

M1 A1
$\cos \omega t=-\frac{1}{4} \quad \therefore \omega t=1.8235, \ldots$
A1
period $=\frac{2 \pi}{\omega}=12 \frac{1}{2} \quad \therefore \omega=\frac{4 \pi}{25}$
M1
giving $t=1.8235 \div \frac{4 \pi}{25}=3.6277$ hours
A1
depth 9 m at $11 \mathrm{am}+3.6277$ hours $=2.38 \mathrm{pm}$ (nearest min.)
A1
(c) depth 9 m again when $\omega t=2 \pi-1.8235=4.4597$
$t=4.4597 \div \frac{4 \pi}{25}=8.8723$
wait until $11 \mathrm{am}+8.8723$ hours $=7.52 \mathrm{pm}$
$\therefore 2$ hours 52 min . wait (nearest min.)
A1
5. (a)

$$
\begin{array}{ll}
\text { let } y=\frac{r}{h} x, \rho=\text { mass per unit volume } & \text { M1 } \\
\therefore \frac{1}{3} \rho \pi r^{2} h \bar{x}=\int_{0}^{h} \rho \pi y^{2} x \mathrm{~d} x & \text { A1 } \\
\frac{1}{3} r^{2} h \bar{x}=\int_{0}^{h} \frac{r^{2}}{h^{2}} x^{3} \mathrm{~d} x=\frac{r^{2}}{h^{2}}\left[\frac{x^{4}}{4}\right]_{0}^{h} & \text { M1 A1 } \\
\frac{1}{3} r^{2} h \bar{x}=\frac{1}{4} r^{2} h^{2} \therefore \bar{x}=\frac{3}{4} h & \text { M1 A1 }
\end{array}
$$

(b)

portion	mass	y	$m y$
cone	$\rho \times \frac{1}{3} \pi r^{2} \times r=\frac{1}{3} \rho \pi r^{3}$	$\frac{3}{4} r$	$\frac{1}{4} \rho \pi r^{4}$
hemisphere	$\frac{1}{2} \times \rho \times \frac{4}{3} \pi r^{3}=\frac{2}{3} \rho \pi r^{3}$	$r+\frac{3}{8} r=\frac{11}{8} r$	$\frac{11}{12} \rho \pi r^{4}$
paperweight	$\rho \pi r^{3}$	\bar{y}	$\frac{7}{6} \rho \pi r^{4}$

$\rho=$ mass per unit volume $\quad y$ coords. taken vert. from vertex
M2 A3
$\rho \pi r^{3} \times \bar{y}=\frac{7}{6} \rho \pi r^{4} \quad \therefore \bar{y}=\frac{7}{6} r$
M1 A1
6. (a)

$$
\begin{array}{ll}
\text { resolve } \uparrow: R-m g=0, R=m g & \text { M1 } \\
\text { resolve } \leftarrow: \mu R=\frac{m v^{2}}{r}, \frac{2}{5} R=\frac{m v^{2}}{40} & \text { M1 A1 } \\
\text { combining, } \frac{2}{5} m g=\frac{m v^{2}}{40} & \text { M1 }
\end{array}
$$

$\therefore v^{2}=\frac{2}{5} g \times 40$ giving $v=12.5 \mathrm{~ms}^{-1}(3 \mathrm{sf})$
A1
(b)

$$
\text { resolve } \uparrow: R \cos 25-\mu R \sin 25-m g=0
$$

M1 A1

$$
R=\frac{m g}{\cos 25-\frac{2}{5} \sin 25}
$$

resolve $\leftarrow: R \sin 25+\mu R \cos 25=\frac{m v^{2}}{r}$
M1 A1

$$
\begin{array}{ll}
\text { combining, } \frac{m g\left(\sin 25+\frac{2}{5} \cos 25\right)}{\cos 25-\frac{-}{5} \sin 25}=\frac{m v^{2}}{40} & \text { M1 } \\
\text { giving } v^{2}=\frac{40 g\left(\sin 25+\frac{2}{5} \cos 25\right)}{\cos 25-\frac{2}{5} \sin 25} \therefore v=20.43 & \text { A1 } \\
\% \text { increase }=\frac{20.43-12.52}{12.52} \times 100 \%=63 \% \text { (nearest WN) } & \text { M1 A1 } \tag{13}
\end{array}
$$

7. (a) $a=v \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{2}{x+1} \times \frac{-2}{(x+1)^{2}}=\frac{-4}{(x+1)^{3}}$

M2 A2
(b) $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{2}{x+1} \therefore \int(x+1) \mathrm{d} x=\int 2 \mathrm{~d} t$
$\frac{1}{2} x^{2}+x=2 t+c$
A1
$t=0, x=0 \quad \therefore c=0$ so $x^{2}+2 x=4 t \quad$ M1
$t=T, x=d \quad \therefore d^{2}+2 d=4 T \quad$ A1
$t=T+9, x=d+4 \quad \therefore(d+4)^{2}+2(d+4)=4(T+9)$
M1
combining, $d^{2}+8 d+16+2 d+8=d^{2}+2 d+36$
giving $8 d=12$ so $d=1.5$
(c) $\quad(1.5)^{2}+2(1.5)=4 T$ giving $T=\frac{21}{16}$ or 1.3125 s

Performance Record - M3 Paper B

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	$\begin{array}{\|c\|} \hline \text { variable } \end{array}$ accel.	$\begin{array}{\|l\|l} \hline \text { elastic } \\ \text { string, } \\ \text { EPE } \end{array}$	motion in a vertica circle	SHM	centre o mass by integr., composite body	$\begin{aligned} & \text { circular } \\ & \text { motion, } \\ & \text { manked } \\ & \text { burak } \end{aligned}$		
Marks	7	8	8	12	13	13	14	75
Student								

