GCE Examinations

Advanced Subsidiary / Advanced Level

Mechanics
 Module M3

Paper A

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

M3 Paper A - Marking Guide

1. (a) $T=\frac{\lambda x}{l}=\frac{30 \times 0.2}{1}=6 \mathrm{~N}$

M1 A1
(b)

resolve $\nearrow: T-m g \sin \alpha=m a$

4
$\therefore 6-0.6 \times 9.8 \times \frac{3}{5}=0.6 a$
giving $a=4.12 \mathrm{~ms}^{-2}$
M1
A1
2. (a) $F=m a=0.5 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=3 x^{\frac{1}{2}}$
$\therefore \int v \mathrm{~d} v=\int 6 x^{\frac{1}{2}} \mathrm{~d} x$ M1
giving $\frac{1}{2} v^{2}=4 x^{\frac{3}{2}}+c$
A1
$x=1, v=2 \quad \therefore c=-2$
M1
$\therefore v^{2}=8 x^{\frac{3}{2}}-4$
A1
(b) $\quad x=4$ gives $v^{2}=64-4=60 \quad \therefore v=\sqrt{ } 60=7.7 \mathrm{~ms}^{-1}(1 \mathrm{dp})$

M1 A1
3. (a) amplitude $=\frac{1}{2} \times 8=4 \mathrm{~m}$
period $=\frac{2 \pi}{\omega}=12 \therefore \omega=\frac{\pi}{6}$
B1
$v_{\max }=a \omega=4 \times \frac{\pi}{6}=\frac{2 \pi}{3} \mathrm{~ms}^{-1}$
M1 A1
(b) $x=a \sin \omega t$

M1
at $P,{ }^{-} 1=4 \sin \omega t \therefore \frac{\pi}{6} t={ }^{-} 0.2527, t={ }^{-} 0.4826$
M1 A1
at $Q, 2=4 \sin \omega t \therefore \frac{\pi}{6} t=\frac{\pi}{6}, t=1$
\therefore time between $=1.48 \mathrm{~s}(3 \mathrm{sf})$
M1 A1
A1
4. (a) $v^{2}=k g-k g e^{-\frac{2 x}{k}} \therefore 2 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=2 g e^{-\frac{2 x}{k}}$

M1 A2
$f=$ accel. $=v \frac{\mathrm{~d} v}{\mathrm{~d} x}=g e^{-\frac{2 x}{k}}$
A1
(b) when x is large, $e^{-\frac{2 x}{k}} \rightarrow 0$
$\therefore 49^{2}=k g$ giving $k=\frac{49^{2}}{9.8}=245$ M1
(c) $v^{2}=k g-k g e^{-\frac{2 x}{k}}=k g-k f$ M1 A1
$\therefore f=g-\frac{1}{k} v^{2}=9.8-\frac{1}{245} v^{2}$ M1 A1 M1 A1
5. (a)

portion	mass	y	$m y$
cone	$\rho \times \frac{1}{3} \pi r^{2}(2 r)=\frac{2}{3} \rho \pi r^{3}$	$h+\frac{1}{4}(2 r)=h+\frac{1}{2} r$	$\frac{2}{3} \rho \pi r^{3}\left(h+\frac{1}{2} r\right)$
cylinder	$\rho \pi r^{2} h$	$\frac{1}{2} h$	$\frac{1}{2} \rho \pi r^{2} h^{2}$
firework	$\rho \pi r^{2}\left(h+\frac{2}{3} r\right)$	\bar{y}	$\rho \pi r^{2}\left(\frac{1}{2} h^{2}+\frac{2}{3} r h+\frac{1}{3} r^{2}\right)$

$\rho=$ mass per unit volume $\quad y$ coords. taken vert. from base
$\rho \pi r^{2}\left(h+\frac{2}{3} r\right) \times \bar{y}=\rho \pi r^{2}\left(\frac{1}{2} h^{2}+\frac{2}{3} r h+\frac{1}{3} r^{2}\right)$
$\therefore 2(3 h+2 r) \times \bar{y}=3 h^{2}+4 r h+2 r^{2}$
giving $\bar{y}=\frac{3 h^{2}+4 h r+2 r^{2}}{2(3 h+2 r)}$
(b)

$$
\begin{array}{ll}
h=4 r \therefore \bar{y}=\frac{33}{14} r & \text { M1 } \\
\tan \alpha=r \div\left(\frac{33}{14} r\right)=\frac{14}{33} & \text { M1 } \\
\therefore \alpha=23^{\circ} \text { (nearest degree) } & \text { A1 }
\end{array}
$$

6. (a) string taut $\therefore P R=a, P R^{2}+Q R^{2}=a^{2}+3 a^{2}=4 a^{2}=P Q^{2}$
by converse of Pythag. $\angle P R Q=90^{\circ}$
(b) $\sin \angle P Q R=\frac{a}{2 a}=\frac{1}{2} \quad \therefore \angle P Q R=30^{\circ}$
(c)

resolve $\uparrow: T_{1} \sin 60-m g=0$

$$
\therefore T_{1}=\frac{2 m g}{\sqrt{3}}\left(\text { or } \frac{2}{3} \sqrt{3} m g\right)
$$

(ii) resolve $\leftarrow: T_{2}+T_{1} \cos 60=\frac{m \nu^{2}}{r}$

$$
\therefore T_{2}=\frac{m u^{2}}{a}-\frac{1}{2} \times \frac{2 m g}{\sqrt{3}}=\frac{m u^{2}}{a}-\frac{m g}{\sqrt{3}}\left(\text { or } \frac{m u^{2}}{a}-\frac{1}{3} \sqrt{3} m g\right)
$$

M1 A1
(d) $\quad P R$ taut $\therefore T_{2} \geq 0$
giving $\frac{m u^{2}}{a} \geq \frac{m g}{\sqrt{3}}$ so $u^{2} \geq \frac{g a}{\sqrt{3}}$
7. (a)

resolve $\uparrow: R-m g=0 \quad \therefore R=2 g$
M1 A1
friction $=\mu R=\frac{10}{49} \times 2 \times 9.8=4$
A1
work-energy:
work done $=$ loss of $\mathrm{KE}-$ gain of EPE \quad M1
$\therefore F s=\frac{1}{2} m u^{2}-\frac{\lambda x^{2}}{2 l}$
so $4 d=\frac{1}{2} \times 2 \times 5^{2}-\frac{50(d-1)^{2}}{2 \times 1}$
A1
$\therefore 4 d=25-25\left(d^{2}-2 d+1\right)$
M1
giving $25 d^{2}-46 d=0, d(25 d-46)=0$
M1
$\therefore d=0$ (initially) or $\frac{46}{25}=1.84 \mathrm{~m}$
(b) work-energy: work done $=$ loss of EPE - gain of KE
$\therefore 4 \times \frac{46}{25}=\frac{50 \times\left(\frac{21}{25}\right)^{2}}{2 \times 1}-\frac{1}{2} \times 2 \times v^{2}$
M1 A1
giving $21^{2}=(4 \times 46)+25 v^{2}$
M1
so $v^{2}=\frac{257}{25} \quad \therefore v=3.2 \mathrm{~ms}^{-1}(2 \mathrm{sf})$
A1
(14)

Total

Performance Record - M3 Paper A
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Question no. } & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \text { Total } \\ \hline \text { Topic(s) } & \begin{array}{l}\text { clastic } \\ \text { spring }\end{array} & \begin{array}{l}\text { variable } \\ \text { force }\end{array} & \begin{array}{l}\text { SHM } \\ \text { Marks }\end{array} & 7 & 7 & 10 & 11 & 13 \\ \text { variable } \\ \text { accel. }\end{array} \begin{array}{c}\text { centre of } \\ \text { mass } \\ \text { equilm. }\end{array} . \begin{array}{l}\text { circular } \\ \text { motion } \\ \text { elastic } \\ \text { string, } \\ \text { EPE, } \\ \text { work } \\ \text { done }\end{array}\right)$

