GCE Examinations

Mechanics Module M3

Advanced Subsidiary / Advanced Level

Paper A

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.
When a numerical value of g is required, use $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.
1.

Fig. 1
A particle of mass 0.6 kg is attached to one end of a light elastic spring of natural length 1 m and modulus of elasticity 30 N . The other end of the spring is fixed to a point O which lies on a smooth plane inclined at an angle α to the horizontal where $\tan \alpha=\frac{3}{4}$ as shown in Figure 1.

The particle is held at rest on the slope at a point 1.2 m from O down the line of greatest slope of the plane.
(a) Find the tension in the spring.
(2 marks)
(b) Find the initial acceleration of the particle.
(5 marks)
2. A particle P of mass 0.5 kg moves along the positive x-axis under the action of a single force directed away from the origin O. When P is x metres from O, the magnitude of the force is $3 x^{\frac{1}{2}} \mathrm{~N}$ and P has a speed of $v \mathrm{~ms}^{-1}$.

Given that when $x=1, P$ is moving away from O with speed $2 \mathrm{~m} \mathrm{~s}^{-1}$,
(a) find an expression for v^{2} in terms of x,
(b) show that when $x=4, P$ has a speed of $7.7 \mathrm{~m} \mathrm{~s}^{-1}$, correct to 1 decimal place. (2 marks)
3. A particle is performing simple harmonic motion along a straight line between the points A and B where $A B=8 \mathrm{~m}$. The period of the motion is 12 seconds.
(a) Find the maximum speed of the particle in terms of π.

The points P and Q are on the line $A B$ at distances of 3 m and 6 m respectively from A.
(b) Find, correct to 3 significant figures, the time it takes for the particle to travel directly from P to Q.
(6 marks)
4. Whilst in free-fall a parachutist falls vertically such that his velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, when he is x metres below his initial position is given by

$$
v^{2}=k g\left(1-\mathrm{e}^{-\frac{2 x}{k}}\right),
$$

where k is a constant.
Given that he experiences an acceleration of $f \mathrm{~ms}^{-2}$,
(a) show that $f=g \mathrm{e}^{-\frac{2 x}{k}}$.
(4 marks)
After falling a large distance, his velocity is constant at $49 \mathrm{~m} \mathrm{~s}^{-1}$.
(b) Find the value of k.
(3 marks)
(c) Hence, express f in the form $\left(\lambda-\mu \nu^{2}\right)$ where λ and μ are constants which you should find.
5.

Fig. 2
A firework is modelled as a uniform solid formed by joining the plane surface of a right circular cone of height $2 r$ and base radius r, to one of the plane surfaces of a cylinder of height h and base radius r as shown in Figure 2.

Using this model,
(a) show that the distance of the centre of mass of the firework from its plane base is

$$
\begin{equation*}
\frac{3 h^{2}+4 h r+2 r^{2}}{2(3 h+2 r)} \text {. } \tag{9marks}
\end{equation*}
$$

The firework is to be launched from rough ground inclined at an angle α to the horizontal. Given that the firework does not slip or topple and that $h=4 r$,
(b) Find, correct to the nearest degree, the maximum value of α.
6.

Fig. 3
The two ends of a light inextensible string of length $3 a$ are attached to fixed points Q and R which are a distance of $a \sqrt{ } 3$ apart with R vertically below Q. A particle P of mass m is attached to the string at a distance of $2 a$ from Q.
P is given a horizontal speed, u, such that it moves in a horizontal circle with both sections of the string taut as shown in Figure 3.
(a) Show that $\angle P R Q$ is a right angle.
(b) Find $\angle P Q R$ in degrees.
(c) Find, in terms of a, g, m and u, the tension in the section of string
(i) $P Q$,
(ii) $P R$.
(d) Show that $u^{2} \geq \frac{g a}{\sqrt{3}}$.
7. A particle of mass 2 kg is attached to one end of a light elastic string of natural length 1 m and modulus of elasticity 50 N . The other end of the string is attached to a fixed point O on a rough horizontal plane and the coefficient of friction between the particle and the plane is $\frac{10}{49}$.

The particle is projected from O along the plane with an initial speed of $5 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Show that the greatest distance from O which the particle reaches is 1.84 m .
(b) Find, correct to 2 significant figures, the speed at which the particle returns to O.

END

