GCE Examinations

Advanced Subsidiary / Advanced Level

Mechanics
 Module M2

Paper F

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

1. $\mathbf{I}=\Delta$ mom. $=0.5[(13 \mathbf{i}+7 \mathbf{j})-(5 \mathbf{i}-8 \mathbf{j})] \quad$ M1 A1

$$
\begin{aligned}
& =0.5(8 \mathbf{i}+15 \mathbf{j}) \\
& \text { mag. of } \mathbf{I}=0.5 \sqrt{ }\left(8^{2}+15^{2}\right)=8.5 \mathrm{Ns}
\end{aligned}
$$

A1
M1 A1
2. (a) change in $\mathrm{KE}=\frac{1}{2} 1000\left(10^{2}-20^{2}\right)={ }^{-} 150000 \mathrm{~J}$

M1 A1
change in $\mathrm{PE}=1000(9.8)(200 \sin \theta)=280000 \mathrm{~J}$
M2 A1
change in ME $=280000-150000=$ increase of 130000 J
A1
(b) air resistance

B1
friction
B1
3. (a) $s=t\left(2 t^{2}-13 t+20\right)=t(2 t-5)(t-4)$

M1 A1
particle at O when $s=0 \therefore$ at $t=0, \frac{5}{2}, 4$ seconds
M1 A1
(b) at rest when $v=0, v=\frac{\mathrm{d} s}{\mathrm{~d} t}=6 t^{2}-26 t+20$

M1 A1
$\therefore 3 t^{2}-13 t+10=0,(t-1)(3 t-10)=0$
M1
$t=1, \frac{10}{3}$ seconds
A1
4. (a)

mom. about $B: 6 g \cos 30^{\circ}-R .2 \cos 30^{\circ}=0$
M1 A1
$\therefore R=3 g$
A1
mom. about $A: 6 g \cos 30^{\circ}-S .2=0$
M1 A1
$\therefore S=\frac{3}{2} \sqrt{ } 3 g$
A1
(b) resolve $\rightarrow: \mu S \sin 60^{\circ}-S \sin 30^{\circ}=0$

$$
\mu=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}=\frac{1}{\sqrt{3}}
$$

A1
(9)
5. (a) at max. ht., $v_{y}=0 \therefore 0=(22 \sin \alpha)^{2}-2 g s$

M1 A1
$s_{y}=\frac{\left(22 \cdot \frac{7}{8}\right)^{2}}{2 g}=18.91$
M1
starts 1.6 m above P so max. ht. above ground $=20.5 \mathrm{~m}(3 \mathrm{sf})$
(b) $s_{y}={ }^{-} 1.4 \quad \therefore u t \sin \alpha-\frac{1}{2} g t^{2}={ }^{-} 1.4$
$\frac{77}{4} t-4.9 t^{2}={ }^{-1.4}$ M1 A1
$14 t^{2}-55 t-4=0 \quad \therefore(14 t+1)(t-4)=0$
M1
$t=4$ in this case \therefore ball in flight for 4 seconds
(c) $s_{x}=u t \cos \alpha=22 \times 4 \times \frac{\sqrt{15}}{8}=11 \sqrt{ } 15=42.6$
max. dist. fielder can run is $4 \times 6=24 \mathrm{~m}$
M1 A1
max. initial dist. between fielder and ball $=42.6+24=66.6 \mathrm{~m}(3 \mathrm{sf})$
A1
A1
6. (a) $\frac{1}{2} a$, since masses on $A D$ are equal to mass at B
(b)

portion	mass	y	$m y$
lamina	$8 m$	a	$8 m a$
particle at A	$2 m$	0	0
particle at B	$6 m$	0	0
particle at D	$4 m$	$2 a$	$8 m a$
total	$20 m$	\bar{y}	$16 m a$

$$
\begin{array}{ll}
y \text { coords. taken vert. from } A B & \text { M2 A1 } \\
\bar{y}=\frac{16 m a}{20 m}=\frac{4}{5} a & \text { M1 A1 }
\end{array}
$$

(c)

portion	mass	x	$m x$
lamina	$8 m$	$\frac{a}{2}$	$4 m a$
particle at A	$2 m$	0	0
particles at B	$(6+k) m$	a	$(6+k) m a$
particle at D	$4 m$	0	0
total	$(20+k) m$	\bar{x}	$(10+k) m a$

x coords. taken horiz. from $A D$
M1 A1

$$
\bar{x}=\frac{(10+k) m a}{(20+k) m}=\frac{(10+k) a}{(20+k)}
$$

$\tan 45^{\circ}=\frac{16 a}{(10+k) a} \therefore \quad 1=\frac{16}{10+k} \quad$ giving $k=6$
M2 A1
7. (a) cons. of mom: $7 u_{1}+4 u_{2}=7\left(\frac{u_{1}}{2}\right)+4 v_{2}$

M1

$$
8 v_{2}=7 u_{1}+8 u_{2}
$$

A1
$\frac{v_{2}-\frac{1}{2} u_{1}}{u_{1}-u_{2}}=e \quad \therefore v_{2}=e u_{1}-e u_{2}+\frac{1}{2} u_{1}$
M1 A1
eliminate v_{2} giving $7 u_{1}+8 u_{2}=8 e u_{1}-8 e u_{2}+4 u_{1}$
M1 A1
$8 u_{2}+8 e u_{2}=8 e u_{1}-3 u_{1} \therefore 8 u_{2}(e+1)=u_{1}(8 e-3)$
A1
(b) sub. in for u_{1} and $u_{2}: 24(e+1)=14(8 e-3)$

M1
$24 e+24=112 e-42$ giving $e=\frac{3}{4}$
M1 A1
(c) speeds of A, B after impact are v_{1} and v_{2} resp.
$v_{1}=7 \mathrm{~ms}^{-1}, v_{2}=\left(\frac{7}{8}\right) 14+3=15.25 \mathrm{~ms}^{-1}$
A1
original $\mathrm{KE}=\frac{1}{2} \times 7 \times 14^{2}+\frac{1}{2} \times 4 \times 3^{2}=704 \mathrm{~J}$
M1 A1
final $\mathrm{KE}=\frac{1}{2} \times 7 \times 7^{2}+\frac{1}{2} \times 4 \times 15.25^{2}=636.625 \mathrm{~J}$
M1 A1
$\%$ KE lost $=\frac{704-636.625}{704} \times 100=9.6 \%(2 \mathrm{sf})$
M1 A1

Total

Performance Record - M2 Paper F

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	$\begin{aligned} & \hline \mathbf{i , j} \\ & \text { impulse } \end{aligned}$	energy	variable accel.	statics	projectiles	centre of mass	collisions, energy	
Marks	5	8	8	9	12	16	17	75
Student								

