GCE Examinations

Advanced Subsidiary / Advanced Level

Mechanics
 Module M2

Paper C

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

M2 Paper C - Marking Guide

1. (a) $\mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}=6 \mathbf{t i}-8 t \mathbf{j}$

M1 A1
$\mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}=6 \mathbf{i}-8 \mathbf{j}$ not dependent on t so constant
M1 A1
(b) $\quad \mathbf{F}=m \mathbf{a}=2 \mathbf{a}=12 \mathbf{i}-16 \mathbf{j}$
mag. of $\mathbf{F}=\sqrt{ }\left[(12)^{2}+\left({ }^{-1} 16\right)^{2}\right]=20 \mathrm{~N}$
M1 A1 (7)
2. (a) X -sect. area of pipe $=\pi r^{2}=\pi(0.05)^{2}$

M1 A1
mass of water per second $=6 \times 0.0025 \pi \times 1000=15 \pi$
M1 A1
(b) energy gained $=\frac{1}{2} m v^{2}+m g h=\frac{15}{2} \pi(6)^{2}+(150 \pi \times 9.8 \times 12)$

$$
=6390 \mathrm{~J}=6.39 \mathrm{~kJ}(3 \mathrm{sf})
$$

M2 A1
A1
(8)
3.
(a) when $t=0, v=4 \mathrm{~ms}^{-1}$

A1
(b) particle at rest when $2 t^{2}-9 t+4=0$ i.e. $(2 t-1)(t-4)=0$
$t=\frac{1}{2}, 4$
A1
(c) $s=\int v \mathrm{~d} t=\frac{2}{3} t^{3}-\frac{9}{2} t^{2}+4 t+c$

M1 A1
when $t=0, s=9$ so $c=9 \quad \therefore s=\frac{2}{3} t^{3}-\frac{9}{2} t^{2}+4 t+9$
disp. when $t=6$ is $\frac{2}{3}(6)^{3}-\frac{9}{2}(6)^{2}+4(6)+9$
A1
$=144-162+24+9=15 \mathrm{~m}$
M1
A1
(9)
4.

resolve $\uparrow: \quad \frac{1}{2} S+R-m g=0$ M1
resolve $\rightarrow: \quad \frac{1}{3} R-S=0$ M1
solve simul. giving $S=\frac{1}{3} R \quad \therefore R=\frac{6}{7} \mathrm{mg}$
M1 A1
mom. about top of ladder $R \cdot 2 a \cos \theta-\frac{1}{3} R \cdot 2 a \sin \theta-m g \cdot a \cos \theta=0$

$$
\begin{equation*}
\therefore \tan \theta=\frac{2 R-m g}{\frac{2}{3} R}=\frac{5}{4} \tag{9}
\end{equation*}
$$

M2 A1
5. (a) vert. disp. $=0 \therefore 8 u_{y}-\frac{1}{2} g(8)^{2}=0$

M1 A1
A1
M1 A1
M1 A1
M1 A1
A1
\therefore max. ht. $=8 g=78.4 \mathrm{~m}$
(d) e.g. small X-section, reasonable to treat as particle and ignore air res. but, significant loss of mass during flight \therefore model not very suitable B3
6. (a) cons. of mom: $3 m u+0=3 m v_{1}+2 m v_{2}$

$$
\therefore 3 v_{1}+2 v_{2}=3 u
$$

$\frac{v_{2}-v_{1}}{u}=\frac{2}{3} \quad \therefore 3 v_{2}-3 v_{1}=2 u$
solve simul. giving $v_{1}=\frac{1}{3} u$ and $v_{2}=u$
(b) cons. of mom: $2 m u+0=2 m w_{1}+2 m w_{2}$

$$
w_{1}+w_{2}=u
$$

$\frac{w_{2}-w_{1}}{u}=e \therefore w_{2}-w_{1}=e u$
solve simul. giving $w_{1}=\frac{1}{2} u(1-e)$
A and B collide again so speed of $B<$ speed of A
$\frac{1}{2} u(1-e)<\frac{1}{3} u$ so $\frac{1}{2} e>\frac{1}{2}-\frac{1}{3} \quad \therefore e>\frac{1}{3}$

M1
M1 A1
7. (a) from triangle properties, area of $B C D=\frac{1}{3}$ area of $A B D$
\therefore area of $B C D=\frac{1}{3}\left(\frac{1}{2} \times 2 d \times \sqrt{ } 3 d\right)=\frac{1}{3} \sqrt{ } 3 d^{2}$

B1
M1 A1
(b)

portion	mass	y	$m y$
$A B D$	$\sqrt{ } 3 d^{2} \rho$	$\frac{1}{3} \sqrt{ } 3 d$	$d^{3} \rho$
$B C D$	$\frac{1}{3} \sqrt{ } 3 d^{2} \rho$	$\frac{1}{9} \sqrt{ } 3 d$	$\frac{1}{9} d^{3} \rho$
$A B C D$	$\frac{2}{3} \sqrt{ } 3 d^{2} \rho$	\bar{y}	$\frac{8}{9} d^{3} \rho$

$\rho=$ mass per unit area $\quad y$ coords. taken vert. from $B D$
M3 A3
$\bar{y}=\frac{\frac{8}{9} d^{3} \rho}{\frac{2}{3} \sqrt{3} d^{2} \rho}=\frac{4 d}{3 \sqrt{3}}=\frac{4}{9} \sqrt{ } 3 d$
(c)

$$
\begin{array}{ll}
\theta=\tan ^{-1} \frac{4 \sqrt{3} d}{d}=\tan ^{-1} \frac{4 \sqrt{3}}{9} & \text { M1 A1 } \\
\text { req'd angle }=60-\theta=22.4^{\circ}(1 \mathrm{dp}) & \text { M1 A1 }
\end{array}
$$

Performance Record - M2 Paper C

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	i, j calculus	KE + PE	variable accel.	statics ladder prob.	projectiles	collisions	centre of mass	
Marks	7	8	9	9	13	14	15	75
Student								

