GCE Examinations

Advanced Subsidiary / Advanced Level

Mechanics
 Module M2

Paper B

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

M2 Paper B - Marking Guide

1. (a) work done $=$ force \times dist. $=8000 \times 0.04=320 \mathrm{~J}$

M1 A1
M1
$=\frac{1}{2} 0.025\left(v^{2}-200^{2}\right) \therefore v^{2}-40000={ }^{-} 25600$
$v^{2}=14400 \quad \therefore v=120 \mathrm{~ms}^{-1}$
2. (a) at max. speed, $a=0, \frac{P}{v}-R=0 \therefore \frac{P}{30}-2000=0$

M1 A1
A1
(b) $1.2 \times 60=72$
$\frac{P}{v}-R=m a \quad \therefore \frac{72000}{30}-2000=m \times 0.32$
$400=0.32 m \quad \therefore m=1250 \mathrm{~kg}$
M1 A1
A1
3. (a)

(i) c.o.m. $=\frac{1}{3}$ dist. from B to $C=\frac{1}{3} \times 9=3 \mathrm{~cm}$ from $A B$

M1 A1
(ii) $A B=\sqrt{ }\left(15^{2}-9^{2}\right)=12 \mathrm{~cm}$

M1 A1
c.o.m. $=\frac{1}{3}$ dist. from B to $A=\frac{1}{3} \times 12=4 \mathrm{~cm}$ from $B C$

M1 A1
(b) lamina will not topple if vertical through c.o.m. passes between B and C max. θ when it passes through B

B1
B1

$\tan \theta=\frac{3}{4} \quad \therefore \theta=36.9^{\circ}(1 \mathrm{dp})$
M1 A1
(10)
4. (a)
$\mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}=3 \mathbf{i}-2 t \mathbf{j}$ and when $t=2, \mathbf{a}=3 \mathbf{i}-4 \mathbf{j}$
M1 A1
mag. of $\mathbf{a}=\sqrt{ }\left[(3)^{2}+(-4)^{2}\right]=5 \mathrm{~ms}^{-2}$
M1 A1
(b)
$s=\int v \mathrm{~d} t=\frac{3}{2} t^{2} \mathbf{i}-\frac{1}{3} t^{3} \mathbf{j}+A \mathbf{i}+B \mathbf{j}$
M1 A1
when $t=0, s=6 \mathbf{i}+12 \mathbf{j}$ so $A=6, B=12$
M1
$s=\left(\frac{3}{2} t^{2}+6\right) \mathbf{i}+\left(12-\frac{1}{3} t^{3}\right) \mathbf{j}$
disp. when $t=6$ is $60 \mathbf{i}-60 \mathbf{j}=60(\mathbf{i}-\mathbf{j}) \quad \therefore k=60$
5. (a)

mom. about $A \quad 8 g\left(a \cos 20^{\circ}\right)-F\left(2 a \sin 20^{\circ}\right)=0$
M1 A1

$$
F=\frac{4 g}{\tan 20^{\circ}}=108 \mathrm{~N}(3 \mathrm{sf})
$$

(b) resolve $\rightarrow: \quad F+X=0 \quad \therefore X={ }^{-} 108$

A1
resolve $\uparrow: \quad Y-8 g=0 \quad \therefore Y=78.4 \mathrm{~N}$
mag. of reaction at hinge $=\sqrt{ }\left[(-108)^{2}+(78.4)^{2}\right]=133 \mathrm{~N}(3 \mathrm{sf})$
M1 A1
req'd angle $=\tan ^{-1} \frac{108}{78.4}=54^{\circ}$ (nearest degree) to the vertical
M1 A1
6. (a) $s_{y}=\left(u t \sin \alpha-\frac{1}{2} g t^{2}\right)=t\left(u \sin \alpha-\frac{1}{2} g t\right)$
$s_{y}=0$ when $t=0($ at $A)$ and when $t=\frac{2 u}{g} \sin \alpha($ at $B)$
$s_{x}=u t \cos \alpha=u\left(\frac{2 u}{g} \sin \alpha\right) \cos \alpha($ at $B)$ M1
$=\frac{u^{2}}{g}(2 \sin \alpha \cos \alpha)=\frac{u^{2}}{g} \sin 2 \alpha$
M1 A1
(b) $\quad \frac{u^{2}}{g} \sin 2 \alpha=80 \quad \therefore \frac{45^{2}}{9.8} \sin 2 \alpha=80$
$\sin 2 \alpha=0.387 \quad$ giving $\alpha=11.4^{\circ}, 78.6^{\circ}(1 \mathrm{dp})$
(c) 11.4° as larger horiz. component of vel.
(d) $t=\frac{2 \times 45}{g} \sin \left(11.4^{\circ}\right)=1.8$ seconds $(1 \mathrm{dp})$

M1 A1
7. (a) cons. of mom: $4 m(u)+0=4 m v_{1}+5 m v_{2}$

$$
4 u=4 v_{1}+5 v_{2}
$$

$\frac{v_{2}-v_{1}}{u-0}=\frac{1}{2} \quad \therefore u=2 v_{2}-2 v_{1}$
solve sim. eqns. to get $v_{1}=\frac{1}{6} u, v_{2}=\frac{2}{3} u$
$\therefore v_{2}=\frac{4}{6} u=4 \times v_{1}$
(b)

Performance Record - M2 Paper B

Question no.	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
Topic(s)	work - energy	power	centre of mass, toppling					
calculus								
Marks				statics	projectiles	collisions		
Student		7	10	10	10	15	16	75

