GCE Examinations

Further Pure Mathematics Module FP3

Advanced Subsidiary / Advanced Level

Paper H

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.

Mathematical and statistical formulae and tables are available.

This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith & Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

1. Given that

 $t_{n+1} = t_n - 4$ for $n \ge 1$, $t_1 = 3$,

prove by induction that $t_n = 7 - 4n$ for all integers $n, n \ge 1$. (5 marks)

2. (a) On the same Argand diagram sketch the locus of the points defined by the equations

(i)
$$z + z^* = 2$$
,
(ii) $\arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{4}$, where $\operatorname{Im}(z) \ge 0$. (6 marks)

The region R of the complex z-plane is defined by the inequalities

$$z + z^* \le 2$$
, $\arg\left(\frac{z-2}{z+2}\right) \ge \frac{\pi}{4}$ and $\operatorname{Im}(z) \ge 0$.

- (b) Shade the region R on the Argand diagram.
- 3. The points *A*, *B* and *C* with coordinates (x_{-1}, y_{-1}) , (x_0, y_0) and (x_1, y_1) respectively lie on the curve y = f(x) where $x_1 x_0 = x_0 x_{-1} = h$ and $y_n = f(x_n)$.
 - (a) By drawing a sketch, or otherwise, show that

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$
. (3 marks)

Given that

$$f'(x) = \sqrt{2x + f(x)}$$
, $f(0) = 1$ and $f(0.2) = 1.25$,

(b) use two applications of the approximation in (a) with a step length of 0.2 to find an estimate for f(0.6).

(5 marks)

(2 marks)

4. The points A, B and C have position vectors **a**, **b** and **c** respectively such that

 $\mathbf{a} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + q\mathbf{j} - 3\mathbf{k}$ and $\mathbf{c} = 3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k}$,

where *q* is a constant and $q \neq 2$.

(a)	Find $\overrightarrow{AB} \times \overrightarrow{AC}$, giving your answer in terms of q.	(5 marks)
<i>(b)</i>	Hence show that the vector $\mathbf{n} = 4\mathbf{i} - \mathbf{k}$ is perpendicular to the plane Π con A , B and C for all real values of q .	itaining
		(2 marks)
(c)	Find an equation of the plane Π , giving your answer in the form $\mathbf{r.n} = p$.	(2 marks)
Given that $q = -1$,		
(d)	find the volume of the tetrahedron OABC.	(3 marks)

5. (a) Use De Moivre's theorem to show that

$$\cos 5\theta \equiv \cos \theta (16\cos^4\theta - 20\cos^2\theta + 5).$$
 (6 marks)

(b) By solving the equation $\cos 5\theta = 0$, deduce that

$$\cos^2\left(\frac{3\pi}{10}\right) = \frac{5-\sqrt{5}}{8}.$$
 (7 marks)

Turn over

6. (a) Find the first three derivatives of $\ln\left(\frac{1+x}{1-2x}\right)$. (6 marks)

(b) Hence, or otherwise, find the expansion of $\ln\left(\frac{1+x}{1-2x}\right)$ in ascending powers of x up to and including the term in x^3 .

(c) State the values of x for which this expansion is valid. (1 mark)

(d) Use this expansion to find an approximate value for $\ln \frac{4}{3}$, giving your answer to 3 decimal places. (3 marks)

7.
$$\mathbf{A} = \begin{pmatrix} 2 & a & 2 \\ -1 & b & -2 \\ 0 & 0 & c \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 6 & 5 & 2 \\ -1 & 0 & -2 \\ 0 & 0 & 5 \end{pmatrix} \text{ and}$$

$$(\mathbf{B} - 2\mathbf{I})\mathbf{A} = 3\mathbf{I} \quad (\mathbf{i})$$

where a, b and c are constants and I is the 3×3 identity matrix.

- (a) Find the values of a, b and c. (6 marks)
- (b) Using equation (i), or otherwise, find \mathbf{A}^{-1} , showing your working clearly. (2 marks) The transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is represented by the matrix \mathbf{A} .

The transformation $T: \mathbb{R} \to \mathbb{R}$ is represented by the matrix \mathbf{A} .

(c) Find an equation satisfied by all the points which remain invariant under T.

(4 marks)

(4 marks)

T maps the vector
$$\begin{pmatrix} p \\ q \\ r \end{pmatrix}$$
 onto the vector $\begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix}$.

(d) Find the values of p, q and r.

(3 marks)

END