GCE Examinations

Further Pure Mathematics Module FP2

Advanced Subsidiary / Advanced Level

Paper C

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.

Mathematical and statistical formulae and tables are available.

This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith & Shaun Armstrong
© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

1. The curve C has intrinsic equation

$$s = 4\sec^3 \psi, \qquad 0 \le \psi < \frac{\pi}{2}.$$

Find the radius of curvature of C at the point where $\psi = \frac{\pi}{4}$. (5 marks)

2. Solve the equation

$$5 \coth x + 1 = 7 \operatorname{cosech} x$$
,

giving your answer in terms of natural logarithms.

(7 marks)

- 3. (a) Show that $\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1-x^2}}$. (3 marks)
 - (b) The curve with equation

$$y = \arccos x - \frac{1}{2}\ln(1-x^2), \quad -1 < x < 1,$$

has a stationary point in the interval $0 \le x \le 1$.

Find the exact coordinates of this stationary point.

(7 marks)

4. (a) Express $3 - 6x - 9x^2$ in the form $a - (bx + c)^2$ where a, b and c are constants. (2 marks)

Hence, or otherwise, find

(b)
$$\int \frac{1}{\sqrt{3-6x-9x^2}} dx$$
, (4 marks)

(c)
$$\int_{-\frac{1}{3}}^{0} \frac{1}{3-6x-9x^2} dx,$$

expressing your answer to part (c) in terms of natural logarithms.

(6 marks)

- 5. $f(x) = \operatorname{artanh}\left(\frac{x^2 1}{x^2 + 1}\right), \quad x > 0.$
 - (a) Using the definitions of $\sinh x$ and $\cosh x$ in terms of exponentials, express $\tanh x$ in terms of e^x and e^{-x} .

(1 mark)

(b) Hence prove that

$$f(x) = \ln x. ag{6 marks}$$

(c) Hence, or otherwise, show that the area bounded by the curve $y = \operatorname{artanh}\left(\frac{x^2 - 1}{x^2 + 1}\right)$, the positive x-axis and the line x = 2e is $2e \ln 2 + 1$.

(5 marks)

- 6. The ellipse C has equation $\frac{x^2}{25} + \frac{y^2}{9} = 1$.
 - (a) Find an equation of the normal to C at the point $P(5\cos\theta, 3\sin\theta)$. (5 marks)

The normal to C at P meets the coordinate axes at Q and R.

Given that *ORSQ* is a rectangle, where *O* is the origin,

(b) show that, as θ varies, the locus of S is an ellipse and find its equation in Cartesian form.

(8 marks)

Turn over

7.
$$I_n(x) = \int_0^x \cos^n 2t \, dt, \quad n \ge 0.$$

(a) Show that

$$nI_n(x) = \frac{1}{2}\sin 2x \cos^{n-1} 2x + (n-1)I_{n-2}(x), \quad n \ge 2.$$
 (7 marks)

(b) Find $I_0\left(\frac{\pi}{4}\right)$ in terms of π . (2 marks)

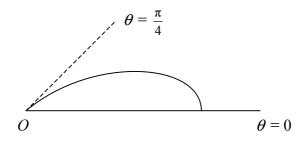


Fig. 1

Figure 1 shows the curve with polar equation

$$r = a\cos^2 2\theta$$
, $0 \le \theta \le \frac{\pi}{4}$,

where a is a positive constant.

(c) Using your answers to parts (a) and (b), or otherwise, calculate the area bounded by the curve and the half-lines $\theta = 0$ and $\theta = \frac{\pi}{4}$.

(7 marks)

END