GCE Examinations

Further Pure Mathematics Module FP1

Advanced Subsidiary / Advanced Level

Paper H

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. (a) Given that

$$
\mathrm{f}(r)=r!,
$$

show that

$$
\begin{equation*}
\mathrm{f}(r+1)-\mathrm{f}(r)=r \times r! \tag{2marks}
\end{equation*}
$$

(b) Hence find

$$
\begin{equation*}
\sum_{r=1}^{n}(r \times r!) \tag{4marks}
\end{equation*}
$$

2. (a) Given that

$$
y=\frac{2 x}{x^{2}+9},
$$

express x in terms of y.
(b) Hence prove that for all real values of x

$$
-\frac{1}{a} \leq \frac{2 x}{x^{2}+9} \leq \frac{1}{a}
$$

where a is a positive integer which you should find.
3. Find the general solution of the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+x y=1-y,
$$

giving your answer in the form $y=\mathrm{f}(x)$.
4.

Fig. 1
Figure 1 shows part of the curves $y=x^{2}$ and $y=\frac{3}{3 x-2}$.
The curves meet at the point with x-coordinate α.
(a) Find the integer N such that $\frac{N}{10}<\alpha<\frac{N+1}{10}$.
(b) Use interval bisection on the interval found in part (a) to find the value of α correct to 2 decimal places.
(5 marks)
5. Given that

$$
\mathrm{f}(z) \equiv z^{4}-4 z^{3}+k z^{2}-4 z+13,
$$

where k is a real constant, and that $z=\mathrm{i}$ is a solution of the equation $\mathrm{f}(z)=0$,
(a) show that $k=14$,
(b) find all solutions of the equation $\mathrm{f}(z)=0$.
6. The shape of a company logo is to be the region enclosed by the curve with polar equation

$$
r^{2}=a^{2} \sin 2 \theta, \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

Fig. 2
A sign in the shape of the logo is to be made by cutting the area enclosed by the curve from a square sheet of metal $O P Q R$ where O is the pole and R lies on the initial line, $\theta=0$, as shown in Figure 2. $P Q$ and $Q R$ are tangents to the curve, parallel and perpendicular to the initial line respectively, at the points A and B on the curve.
(a) Find the value of θ at the point A.
(b) Show that the area of $O P Q R$ is $\frac{3 \sqrt{3}}{8} a^{2}$.
(c) Find the area of the metal sheet which is not used.
7. Given that $x=k \mathrm{e}^{-t}$ satisfies the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+5 \frac{\mathrm{~d} x}{\mathrm{~d} t}+6 x=8 \mathrm{e}^{-t}
$$

(a) find the value of k.
(b) Hence find the solution of the differential equation for which $x=1$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=3$ at $t=0$.

The maximum value of x occurs when $t=T$.
(c) Show that the maximum value of x is $\frac{40}{27}$ and find the value of T.

