GCE Examinations

Further Pure Mathematics Module FP1

Advanced Subsidiary / Advanced Level

Paper G

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. Find the set of values of x for which

$$
\begin{equation*}
\frac{x^{2}-12}{x} \geq 1 \tag{7marks}
\end{equation*}
$$

2. Show that the sum of the first n terms of the series

$$
\begin{equation*}
5^{2}+9^{2}+13^{2}+17^{2}+\ldots \tag{7marks}
\end{equation*}
$$

is given by $\frac{1}{3} n\left(16 n^{2}+36 n+23\right)$.
3.

$$
\mathrm{f}(x) \equiv x^{3}-5 x^{2}+2
$$

(a) Show that the equation $\mathrm{f}(x)=0$ has a root α in the interval $[0,1]$.
(b) Use the Newton-Raphson method with initial value $x=0.5$ to find a value for α which is correct to 2 decimal places.
(c) Give a reason why the Newton-Raphson method fails if an initial value of $x=0$ is used in part (b).
(2 marks)
4. The complex number z is given by

$$
z=\frac{1+\mathrm{i} \sqrt{3}}{1-\mathrm{i} \sqrt{3}} .
$$

(a) Show that z can be expressed in the form

$$
\lambda(1-\mathrm{i} \sqrt{3})
$$

where λ is a rational number which you should find.
(b) Find the modulus and argument of z.
(c) Hence, or otherwise, find the modulus and argument of

$$
\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)^{4}
$$

5. (a) Find the values of p and q such that $y=p \sin x+q \cos x$ is a particular integral of the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+5 y=\sin x
$$

(b) Find the general solution of this differential equation.
6. (a) Show that

$$
\int 2 \cot x \mathrm{~d} x=\ln \left(\sin ^{2} x\right)+c
$$

where c is an arbitrary constant.
(b) Find the general solution of the differential equation

$$
\begin{equation*}
\sin x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y \cos x=1 \tag{5marks}
\end{equation*}
$$

Given that $y=0$ when $x=\frac{\pi}{4}$,
(c) show that when $x=\frac{\pi}{3}$,

$$
\begin{equation*}
y=\frac{2}{3}(\sqrt{ } 2-1) \tag{4marks}
\end{equation*}
$$

7.

Fig. 1
Figure 1 shows the curve C with polar equation

$$
r=2(1+\cos \theta), \quad-\pi<\theta \leq \pi,
$$

and the line l with polar equation

$$
r \cos \theta=\frac{3}{2},
$$

referred to the pole O and initial line $\theta=0$.
(a) Find the polar coordinates of the points A and B, where l intersects C.
(b) Show that the area of triangle $O A B$ is $\frac{9 \sqrt{3}}{4}$.
(c) Hence find the area of the shaded region bounded by C and l.

END

