GCE Examinations

Further Pure Mathematics Module FP1

Advanced Subsidiary / Advanced Level

Paper E

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. The complex number w is given by $w=\frac{10+5 \mathrm{i}}{2-\mathrm{i}}$.
(a) Express w in the form $a+\mathrm{i} b$ where a and b are real.
(b) Using your answer to part (a) find the complex number z such that

$$
\begin{equation*}
z+2 z^{*}=w . \tag{4marks}
\end{equation*}
$$

2. Show that

$$
\begin{equation*}
\sum_{r=0}^{n}(r+1)(r+2)=\frac{1}{3}(n+1)(n+2)(n+3) . \tag{7marks}
\end{equation*}
$$

3. Find the equation of the curve which passes through the origin and for which

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x+y
$$

giving your answer in the form $y=\mathrm{f}(x)$.
4. The curve C has the polar equation

$$
r=a(1+\sin \theta), \quad 0 \leq \theta \leq \frac{\pi}{2} .
$$

(a) Sketch the curve C.
(b) Find the polar coordinates of the point on the curve where the tangent to the curve is perpendicular to the initial line $\theta=0$.
5. (a) Find, in terms of a and b, the equations of the asymptotes to the curve with equation

$$
y=\frac{a x-1}{x+b}
$$

where a and b are positive constants.
(b) Sketch the curve

$$
y=\frac{a x-1}{x+b}
$$

showing the coordinates of any points of intersection with the coordinate axes.
(c) Hence, or otherwise, find the set of values of x for which

$$
\begin{equation*}
\left|\frac{3 x-1}{x+2}\right|<2 \tag{6marks}
\end{equation*}
$$

6. (a) Show that the equation $\mathrm{e}^{x}-4 \sin x=0$ has a root, α, in the interval $[0,1]$ and a root, β, in the interval [1, 1.5].
(b) Using the Newton-Raphson method with an initial value of $x=0.5$, find α correct to 2 decimal places.
(c) Use linear interpolation once between the values $x=1$ and $x=1.5$ to find an approximate value for β, giving your answer correct to 1 decimal place.
(d) Determine whether or not your answer to part (c) gives the value of β correct to 1 decimal place.
7. (a) Given that y is a function of t and that $x=t^{\frac{1}{2}}$, where $x>0$, show that
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 t^{\frac{1}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}$,
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \frac{\mathrm{~d} y}{\mathrm{~d} t}+4 t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}$.
(6 marks)
(b) Use your answers to part (a) to show that the substitution $x=t^{\frac{1}{2}}$ transforms the differential equation

$$
\begin{equation*}
\frac{1}{x^{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\left(\frac{4}{x}-\frac{1}{x^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+3 y=3 x^{2}+5 \tag{I}
\end{equation*}
$$

into the differential equation

$$
4 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+8 \frac{\mathrm{~d} y}{\mathrm{~d} t}+3 y=3 t+5
$$

(c) Hence find the general solution of differential equation (I).

END

