GCE Examinations

Further Pure Mathematics Module FP1

Advanced Subsidiary / Advanced Level

Paper D

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. The function f is defined by

$$
\mathrm{f}(x) \equiv 3 x^{3}+k x^{2}+42 x+k,
$$

where k is an integer.
Given that $(3+\mathrm{i})$ is a root of the equation $\mathrm{f}(x)=0$,
(a) find a quadratic factor of $\mathrm{f}(x)$,
(b) find the value of k.
2. Find the set of values of x for which

$$
\begin{equation*}
\frac{x}{x-1}>\frac{2}{3-x} . \tag{8marks}
\end{equation*}
$$

3. Given that $y=\frac{1}{2}$ when $x=0$, solve the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-3 x+4 x y=0
$$

giving your answer in the form $y=\mathrm{f}(x)$.
4. (a) Express $\frac{3 r+4}{r(r+1)(r+2)}$ in partial fractions.
(b) Hence, show that

$$
\begin{equation*}
\sum_{r=1}^{n} \frac{3 r+4}{r(r+1)(r+2)}=\frac{n(5 n+9)}{2(n+1)(n+2)} \tag{7marks}
\end{equation*}
$$

5. (a) Find the values of a, b and c such that $y=a x^{2}+b x+c$ satisfies the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+10 y=5 x^{2}-13 x+1 . \tag{5marks}
\end{equation*}
$$

(b) Hence, find the general solution of this differential equation.
6.

$$
\mathrm{f}(x) \equiv \frac{2}{3} x+\sin 2 x-1, x \in \mathbb{R} .
$$

(a) By sketching the graphs of $y=\sin 2 x$ and $y=1-\frac{2}{3} x$ on the same diagram, find the number of solutions to the equation $\mathrm{f}(x)=0$.
(b) (i) Show that one root, α, of the equation $\mathrm{f}(x)=0$ lies in the interval $(2.5,3)$.
(ii) Use one application of the method of linear interpolation on this interval to find an approximate value for α, giving your answer correct to 2 decimal places.
(iii) Determine whether or not your answer to part (ii) gives the value of α correct to 2 decimal places.
(c) Use the Newton-Raphson method with a starting value of $x=0.5$ to find another root of the equation $\mathrm{f}(x)=0$ correct to 3 significant figures.
7.

Fig. 1
Figure 1 shows the curve C with polar equation

$$
r=a(1-\cos \theta), \quad 0 \leq \theta<2 \pi,
$$

where a is a positive constant.
At the points P and Q the tangents to the curve are parallel to the initial line $\theta=0$.
(a) Find the polar coordinates of P and Q.

The shaded region is bounded by the curve C and the straight line $P Q$.
(b) Show that the area of the shaded region is $\frac{1}{16} a^{2}(8 \pi+9 \sqrt{ } 3)$.
(10 marks)

END

