GCE Examinations

Further Pure Mathematics Module FP1

Advanced Subsidiary / Advanced Level

Paper C

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. Find the set of values of x for which

$$
\begin{equation*}
|x-2|>2|x+1| . \tag{6marks}
\end{equation*}
$$

2. (a) By using the substitution $y=v x$, or otherwise, find the general solution of the differential equation

$$
\begin{equation*}
x y \frac{\mathrm{~d} y}{\mathrm{~d} x}=x^{2}+y^{2} . \tag{7marks}
\end{equation*}
$$

(b) Given also that $y=2$ when $x=1$, show that for $x>0$

$$
\begin{equation*}
y^{2}=2 x^{2}(\ln x+2) \tag{2marks}
\end{equation*}
$$

3. (a) Find the sum of the series

$$
2^{3}+4^{3}+6^{3}+\ldots+(2 n)^{3}
$$

giving your answer in a simplified form.
(b) Hence, or otherwise, show that the sum of the series

$$
1^{3}-2^{3}+3^{3}-4^{3}+\ldots+(2 n-1)^{3}-(2 n)^{3}
$$

$$
\begin{equation*}
\text { is }-n^{2}(4 n+3) \tag{6marks}
\end{equation*}
$$

4. Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+9 y=2 \mathrm{e}^{3 x} \tag{10marks}
\end{equation*}
$$

5.

Fig. 1
Figure 1 shows part of the curve $y=\mathrm{f}(x)$ where

$$
\mathrm{f}(x) \equiv 2 x-\tan x, x \in \mathbb{R}, 0 \leq x<\frac{\pi}{2}
$$

(a) Show that there is a root, α, of the equation $\mathrm{f}(x)=0$ in the interval $(1,1.5)$.
(b) Use the Newton-Raphson method with an initial value of $x=1.25$ to find α correct to 2 decimal places and justify the accuracy of your answer.
(c) Explain with the aid of a diagram why the Newton-Raphson method fails if an initial value of $x=0.75$ is used when trying to find α.
6. \quad The complex numbers z and w are defined such that

$$
\begin{aligned}
& 3 z+w=14, \text { and } \\
& z-\mathrm{i} w=15-9 \mathrm{i} .
\end{aligned}
$$

(a) Show that $z=3-4 \mathrm{i}$ and find w in the form $a+\mathrm{i} b$, where a and b are real numbers.
(b) Find the square roots of z in the form $c+\mathrm{i} d$, where c and d are real numbers.
7.

Fig. 2
Figure 2 shows the curves with polar equations

$$
\begin{array}{ll}
r=4 \sin 2 \theta & 0 \leq \theta \leq \frac{\pi}{2}, \\
r=4 \cos \theta & 0 \leq \theta \leq \frac{\pi}{2} .
\end{array}
$$

(a) Find the polar coordinates of the point P where the two curves intersect.
(b) Find the exact area of the shaded region bounded by the two curves.

END

