GCE Examinations

Further Pure Mathematics Module FP1

Advanced Subsidiary / Advanced Level

Paper B

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. Find the set of values of x for which

$$
\begin{equation*}
\left|2 x^{2}-5 x\right|<x . \tag{6marks}
\end{equation*}
$$

2. (a) Sketch the curve C with the polar equation

$$
\begin{equation*}
r^{2}=a^{2} \sin ^{2} 2 \theta, \quad 0 \leq \theta<2 \pi \tag{3marks}
\end{equation*}
$$

(b) Find the exact area of the region enclosed by one loop of the curve C.
3. (a) Show that

$$
\begin{equation*}
\sum_{r=1}^{n}\left(r^{2}+1\right)(r-1)=\frac{1}{12} n(n-1)\left(3 n^{2}+5 n+8\right) . \tag{6marks}
\end{equation*}
$$

(b) Hence evaluate

$$
\begin{equation*}
\sum_{r=5}^{25}\left(r^{2}+1\right)(r-1) . \tag{3marks}
\end{equation*}
$$

4. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}-y \cot x=\sin 2 x \tag{6marks}
\end{equation*}
$$

(b) Given also that $y=2$ when $x=\frac{\pi}{6}$, find the exact value of y when $x=\frac{2 \pi}{3}$.
5.

$$
\mathrm{f}(x) \equiv x^{3}-\ln \left(4-x^{2}\right), x \in \mathbb{R},-2<x<2 .
$$

(a) Show that one root, α, of the equation $\mathrm{f}(x)=0$ lies in the interval $1.0<\alpha<1.1$
(b) Starting with $x=1.0$, show that using the Newton-Raphson method twice gives an approximation to α that is correct to 6 decimal places.
6. The complex numbers z_{1}, z_{2} and z_{3} are given by

$$
z_{1}=7-\mathrm{i}, \quad z_{2}=1+\mathrm{i} \sqrt{ } 3, \quad z_{3}=a+\mathrm{i} b,
$$

where a and b are rational constants.
Given that the modulus of $z_{1} z_{3}$ is 50 ,
(a) find the modulus of z_{3}.

Given also that the argument of $\frac{z_{2}}{z_{3}}$ is $\frac{7 \pi}{12}$,
(b) find the argument of z_{3}.
(c) Find the values of a and b.
(d) Show that $\frac{z_{1}}{z_{3}}=\frac{1}{5}(4+3 i)$.
(e) Represent z_{1}, z_{3} and $\frac{z_{1}}{z_{3}}$ on the same Argand diagram.
(f) By considering the modulus and argument of z_{1} and z_{3}, explain why $\frac{z_{3}}{z_{1}}=\left(\frac{z_{1}}{z_{3}}\right)^{*}$.
7. (a) Given that $x=\mathrm{e}^{t}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of $\frac{\mathrm{d} y}{\mathrm{~d} t}$ and show that

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\mathrm{e}^{-2 t}\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} t}\right) \tag{5marks}
\end{equation*}
$$

(b) Show that the substitution $x=\mathrm{e}^{t}$ transforms the differential equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=6 x^{2}
$$

into the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} t}-3 y=6 \mathrm{e}^{2 t}
$$

(3 marks)
(c) Given that when $x=1, y=3$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=-5$, solve the differential equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 y=6 x^{2}
$$

END

