GCE Examinations

Further Pure Mathematics Module FP1

Advanced Subsidiary / Advanced Level
Paper A
Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 8 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.
1.

$$
\mathrm{f}(z) \equiv z^{3}-5 z^{2}+17 z-13
$$

(a) Show that $(z-1)$ is a factor of $\mathrm{f}(z)$.
(b) Hence find all the roots of the equation $\mathrm{f}(z)=0$, giving your answers in the form $a+\mathrm{i} b$ where a and b are integers.
(5 marks)
2. Find the general solution of the differential equation

$$
x \frac{\mathrm{~d} y}{\mathrm{~d} x}+3 y=\frac{\mathrm{e}^{x}}{x^{2}},
$$

giving your answer in the form $y=\mathrm{f}(x)$.
(6 marks)
3. (a) Express $\frac{1}{r(r+1)}$ in partial fractions.
(2 marks)
(b) Hence, or otherwise, find

$$
\sum_{r=3}^{35} \frac{1}{r(r+1)}
$$

giving your answer as a fraction in its lowest terms.
(4 marks)
4. Find the set of values of x for which

$$
\begin{equation*}
\frac{(x-3)^{2}}{x+1}<2 \tag{7marks}
\end{equation*}
$$

5. (a) Sketch the curve with polar equation $r=a \cos 3 \theta, a>0$, for $0 \leq \theta \leq \pi$.
(b) Show that the total area enclosed by the curve $r=a \cos 3 \theta$ is $\frac{\pi a^{2}}{4}$.
6.

Fig. 1
Figure 1 shows the curves $y=2 \cos x$ and $y=\mathrm{e}^{x}$ in the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
Given that $\mathrm{f}(x) \equiv \mathrm{e}^{x}-2 \cos x$,
(a) write down the number of solutions of the equation $\mathrm{f}(x)=0$ in the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
(b) Show that the equation $\mathrm{f}(x)=0$ has a solution, α, in the interval $[0,1]$.
(c) Using 0.5 as a first approximation to α, use the Newton-Raphson process once to find an improved estimate for α, giving your answer correct to 2 decimal places.
(4 marks)
(d) Show that the estimate of α obtained in part (c) is accurate to 2 decimal places.
(2 marks)
There is another root, β, of the equation $\mathrm{f}(x)=0$ in the interval $[-2,-1]$.
(e) Use linear interpolation once on this interval to estimate the value of β, giving your answer correct to 2 decimal places.
(3 marks)
7. \quad The complex numbers z and w are such that

$$
z=\frac{A}{1-\mathrm{i}} \quad \text { and } \quad w=\frac{B}{2+\mathrm{i}}
$$

where A and B are real.
Given that $z+w=6$,
(a) find A and B.
z and w are represented by the points P and Q respectively on an Argand diagram.
(b) Show P and Q on the same Argand diagram.
(c) Find the distance $P Q$ in the form $a \sqrt{ } 5$.
8. (a) Find the values of p and q such that $x=p \cos t+q \sin t$ satisfies the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} x}{\mathrm{~d} t}+3 x=\sin t \tag{6marks}
\end{equation*}
$$

(b) Hence find the solution of this differential equation for which $x=1$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{2}$ at $t=0$.

END

