GCE Examinations

Advanced Subsidiary / Advanced Level

Decision Mathematics

Module D2

Paper F

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Craig Hunter, Edited by Shaun Armstrong
© Solomon Press

D2 Paper F - Marking Guide

1. (a) $x_{11}=\left\{\begin{array}{l}1 \text { if Alan is assigned to the lawns }\end{array}\right.$ 0 otherwise
$x_{12}=\left\{\begin{array}{l}1 \text { if Alan is assigned to the hedgerows }\end{array}\right.$ $\{0$ otherwise
$x_{13}=\{1$ if Alan is assigned to the flower beds 0 otherwise
$x_{21}= \begin{cases}1 & \text { if Beth is assigned to the lawns }\end{cases}$
$\{0$ otherwise
$x_{22}=\left\{\begin{array}{l}1 \text { if Beth is assigned to the hedgerows }\end{array}\right.$ 0 otherwise
$x_{23}=\left\{\begin{array}{l}1 \text { if Beth is assigned to the flower beds }\end{array}\right.$ $\{0$ otherwise
$x_{31}=\left\{\begin{array}{l}1 \text { if Colin is assigned to the lawns }\end{array}\right.$
$x_{32}= \begin{cases}1 & \text { if Colin is assigned to the hedgerows }\end{cases}$ $\{0$ otherwise
$x_{33}= \begin{cases}1 & \text { if Colin is assigned to the flower beds } \\ 0 & \text { ore }\end{cases}$ 0 otherwise
(b) minimise
$z=4 x_{11}+4.5 x_{12}+6 x_{13}+3 x_{21}+4 x_{22}+5 x_{23}+3.5 x_{31}+5 x_{32}+6 x_{33} \quad$ B2
(c) $x_{11}+x_{12}+x_{13}=1 \quad$ Alan has exactly one job
$x_{21}+x_{22}+x_{23}=1 \quad$ Beth has exactly one job
$x_{31}+x_{32}+x_{33}=1 \quad$ Colin has exactly one job
$x_{11}+x_{21}+x_{31}=1 \quad$ lawns are done by one gardener
$x_{12}+x_{22}+x_{32}=1 \quad$ hedgerows are done by one gardener
$x_{13}+x_{23}+x_{33}=1 \quad$ flower beds are done by one gardener
$x_{i j} \geq 0$ for all i, j
reference to balance
2.

Stage	Previous tournament	Current tournament	Value
1	G	$\begin{gathered} \hline J \\ K \\ L \end{gathered}$	$\begin{gathered} \hline 2 \\ 4^{*} \\ 1 \end{gathered}$
	H	$\begin{gathered} \hline J \\ K \\ L \end{gathered}$	$\begin{gathered} 3^{*} \\ 2 \\ 2 \end{gathered}$
	I	$\begin{gathered} \hline J \\ K \\ L \end{gathered}$	$\begin{gathered} 2 \\ 5^{*} \\ 3 \end{gathered}$
2	D	$\begin{gathered} \hline \hline G \\ H \\ I \end{gathered}$	$\begin{aligned} & \hline \min (5,4)=4^{*} \\ & \min (3,3)=3 \\ & \min (3,5)=3 \end{aligned}$
	E	$\begin{gathered} G \\ H \\ I \end{gathered}$	$\begin{aligned} & \min (3,4)=3 \\ & \min (5,3)=3 \\ & \min (6,5)=5^{*} \end{aligned}$
	F	$\begin{gathered} \hline G \\ H \\ I \end{gathered}$	$\begin{aligned} & \min (3,4)=3 \\ & \min (6,3)=3 \\ & \min (5,5)=5^{*} \end{aligned}$
3	A	$\begin{aligned} & \hline D \\ & E \\ & F \end{aligned}$	$\begin{aligned} & \min (6,4)=4 \\ & \min (3,5)=3 \\ & \min (7,5)=5^{*} \end{aligned}$
	B	$\begin{aligned} & D \\ & E \\ & F \end{aligned}$	$\begin{aligned} & \min (5,4)=4 \\ & \min (5,5)=5^{*} \\ & \min (4,5)=4 \end{aligned}$
	C	$\begin{aligned} & \hline D \\ & E \\ & F \end{aligned}$	$\begin{aligned} & \min (7,4)=4 \\ & \min (5,5)=5^{*} \\ & \min (5,5)=5^{*} \end{aligned}$
4	None	$\begin{aligned} & \hline A \\ & B \\ & C \end{aligned}$	$\begin{aligned} & \hline \min (5,5)=5^{*} \\ & \min (3,5)=3 \\ & \min (3,5)=3 \\ & \hline \end{aligned}$

M1 A1

M1 A2

M1 A1

A1
he should play A, F, I and K
M1 A1
3.
row min.

5	20	12	18	5	
6	18	15	16	6	
4	21	9	15	4	
5	16	11	13		5

reducing rows gives:
$\begin{array}{llll}0 & 15 & 7 & 13\end{array}$
$\begin{array}{llll}0 & 12 & 9 & 10\end{array}$
$\begin{array}{llll}0 & 17 & 5 & 11\end{array}$
01168
$\begin{array}{lllll}\text { col min. } & 0 & 11 & 5 & 8\end{array}$
reducing columns gives:
$\begin{array}{llll}0 & 4 & 2 & 5\end{array}$
$\begin{array}{llll}0 & 1 & 4 & 2\end{array}$
$0 \quad 6 \quad 0 \quad 3$
(N.B. a different choice of lines will

A1
10010
lead to the same final assignment)
3 lines required to cover all zeros, apply algorithm
B1
$\begin{array}{llll}0^{*} & 3 & 1 & 4 \\ 0 & 0^{*} & 3 & 1 \\ 1 & 6 & 0^{*} & 3 \\ 2 & 0 & 1 & 0^{*}\end{array}$
M1 A1

4 lines required to cover all zeros so allocation is possible
B1
Andrew reviews a film
Betty reviews a musical
Carlos reviews a ballet
Davina reviews a concert
total cost $=5+18+9+13=£ 45$
4. (a)

$\max ($ row min $)=-4 \quad \min ($ col max $)=2$
$\max ($ row $\min) \neq \min ($ col max) \therefore no saddle point
B1
(b) let B play strategies I and II with proportions q and $(1-q)$ expected loss for B against each of A 's strategies:
A I $\quad 4 q-8(1-q)=12 q-8$
A II $\quad 2 q-4(1-q)=6 q-4$
A III $\quad-8 q+2(1-q)=2-10 q$
giving

B2
it is not worth player A considering strategy I
for optimal strategy $6 q-4=2-10 q$

$$
\therefore 16 q=6, q=\frac{3}{8}
$$

$\therefore B$ should play I $\frac{3}{8}$ of time and II $\frac{5}{8}$ of time
(c) let A play strategies II and III with proportions p and $(1-p)$
expected payoff to A against each of B 's strategies:
B I $\quad 2 p-8(1-p)=10 p-8$
B II $\quad-4 p+2(1-p)=2-6 p$
for optimal strategy $10 p-8=2-6 p$

$$
\therefore 16 p=10, p=\frac{5}{8}
$$

$\therefore A$ should play I never, II $\frac{5}{8}$ of time and III $\frac{3}{8}$ of time M1 A1
(d) value of game $=\left(6 \times \frac{3}{8}\right)-4=-1 \frac{3}{4}$
5. (a) add dummy

	S_{1}	S_{2}	S_{3}	Available
W_{1}	40	5		45
W_{2}		18	22	40
Dummy			15	15
Required	40	23	37	

$$
\begin{array}{lllll}
\text { taking } R_{1}=0, & R_{1}+K_{1}=8 & \therefore K_{1}=8 & R_{1}+K_{2}=7 & \therefore K_{2}=7 \\
& R_{2}+K_{2}=10 & \therefore R_{2}=3 & R_{2}+K_{3}=11 & \therefore K_{3}=8 \\
& R_{3}+K_{3}=0 & \therefore R_{3}=-8 & &
\end{array}
$$

	$K_{1}=8$	$K_{2}=7$	$K_{3}=8$	
$R_{1}=0$	0	0	11	
$R_{2}=3$	0	9	(0)	0
$R_{3}=-8$		0	0	0

improvement indices, $I_{i j}=C_{i j}-R_{i}-K_{j}$

$$
\begin{aligned}
\therefore \quad I_{13} & =11-0-8=3 \\
I_{21} & =9-3-8=-2 \\
I_{31} & =0-(-8)-8=0 \\
I_{32} & =0-(-8)-7=1
\end{aligned}
$$

(c) applying algorithm

	S_{1}	S_{2}	S_{3}
W_{1}	$40-\theta$	$5+\theta$	
W_{2}	θ	$18-\theta$	22
Dummy			15

let $\theta=18$, giving

	S_{1}	S_{2}	S_{3}
W_{1}	22	23	
W_{2}	18		22
Dummy			15

taking $R_{1}=0, \quad R_{1}+K_{1}=8 \quad \therefore K_{1}=8$
$R_{1}+K_{2}=7 \quad \therefore K_{2}=7$
$R_{2}+K_{1}=9 \quad \therefore R_{2}=1$
$R_{2}+K_{3}=11 \quad \therefore K_{3}=10$

	$K_{1}=8$	$K_{2}=7$		$K_{3}=10$	
$R_{1}=0$	0	0	11		
$R_{2}=1$	0	10		0	
$R_{3}=-10$	0	0	0	0	

$$
\begin{aligned}
\therefore \quad I_{13} & =11-0-10=1 \\
I_{22} & =10-1-7=2 \\
I_{31} & =0-(-10)-8=2 \\
I_{32} & =0-\left({ }^{-10}\right)-7=3
\end{aligned}
$$

all improvement indices are non-negative \therefore pattern is optimal
22 rolls from W_{1} to $S_{1}, 23$ rolls from W_{1} to $S_{2}, 18$ rolls from W_{2} to S_{1}, 22 rolls from W_{2} to S_{3}, S_{3} still requires 15 rolls
6. (a)

add $B E-79, C E-57, C F-66$
(b) $\quad A B$ (36), $B D$ (41), $D C$ (19), $C E$ (57), $E F$ (27), $F A$ (53) tour: $A B D C E F A$
upper bound $=36+41+19+57+27+53=233$ miles
(ii) use $A F$ saving $36+41+38+27-53=89$
use $B C$ saving $41+19-44=16$
new upper bound $=322-89-16=217$ miles

lower bound $=$ weight of MST + two edges of least weight from A

$$
=(41+19+38+27)+36+50=211 \text { miles }
$$

Performance Record - D2 Paper F

Question no.	1	2	3	4	5	6	Total
Topic(s)	allocation, formulate lin. prog.	dynamic prog., maximin	allocation	game, graphical method	transport., dummy, n -w corner, steppingstone	TSP, neighbour, shortcuts	
Marks	7	10	10	15	16	17	75
Student							

