GCE Examinations

Advanced Subsidiary / Advanced Level

Decision Mathematics

Module D2

Paper E

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Craig Hunter, Edited by Shaun Armstrong
© Solomon Press

D2 Paper E - Marking Guide

1. (a) x_{11} - number of windows from F_{1} to B_{1} x_{12} - number of windows from F_{1} to B_{2} x_{13} - number of windows from F_{1} to B_{3} x_{21} - number of windows from F_{2} to B_{1} x_{22} - number of windows from F_{2} to B_{2} x_{23} - number of windows from F_{2} to B_{3} x_{31} - number of windows from F_{3} to B_{1} x_{32} - number of windows from F_{3} to B_{2} x_{33} - number of windows from F_{3} to B_{3}
(b) maximise
$z=20 x_{11}+14 x_{12}+17 x_{13}+18 x_{21}+19 x_{22}+19 x_{23}+15 x_{31}+17 x_{32}+23 x_{33} \quad$ B2
(c) $x_{11}+x_{12}+x_{13}=20$ number of windows at F_{1} $x_{21}+x_{22}+x_{23}=35$ number of windows at F_{2} $x_{31}+x_{32}+x_{33}=15$ number of windows at F_{3} $x_{11}+x_{21}+x_{31}=30 \quad$ number of windows ordered by B_{1} $x_{12}+x_{22}+x_{32}=18$ number of windows ordered by B_{2} M1 A1 $x_{13}+x_{23}+x_{33}=22$ number of windows ordered by B_{3} $x_{i j} \geq 0$ for all i, j reference to balance B1 (6)
2. (a)

add $A D-2700, B D-3100, C E-2500$
M1 A1
(b) $A B$ (800), $B E$ (900), $E C$ (2500), $C D$ (1200), $D A$ (2700)

M1 A1
tour: $A B E C D A$
upper bound $=800+900+2500+1200+2700=8100 \mathrm{~m}$
(c) actual tour is $A B E A C D C A$ as $E C$ and $D A$ are not in original network M1 A1
3. (a) row min.

5	3	5	4	3
7	5	6	4	4
8	4	7	6	4
5	3	2	3	2

reducing rows gives:

2	0	2	1
3	1	2	0
4	0	3	2
3	1	0	1
- ---1			
2	0	0	0

col min. 20000
reducing columns gives

$$
\begin{array}{cccc}
0^{*} & 0 & 2 & 1 \\
1 & 1 & 2 & 0^{*} \\
2 & 0^{*} & 3 & 2 \\
1 & 1 & 0^{*} & 1
\end{array}
$$

4 lines are required to cover all zeros so allocation is possible
B1
strip wallpaper - Alice
paint - Dieter
hang wallpaper - Bhavin
M1 A1
replace fittings - Carl
(b) $5+4+4+2=15$ hours
4.

Stage	State	Action	Destination	Value
1	H	$H K$	K	3^{*}
	I	$I K$	K	4^{*}
	J	$J K$	K	6^{*}
2	E	$E H$	H	$\max (6,3)=6$
		$E I$	I	$\max (5,4)=5^{*}$
	F	$F H$	H	$\max (6,3)=6$
		$F I$	I	$\max (5,4)=5^{*}$
		$F J$	J	$\max (7,6)=7$
	G	$G I$	I	$\max (4,4)=4^{*}$
		$G J$	J	$\max (4,6)=6$
3	B	$B E$	E	$\max (7,5)=7$
		$B F$	F	$\max (4,5)=5^{*}$
	C	$C E$	E	$\max (6,5)=6$
		$C F$	F	$\max (6,5)=6$
		$C G$	G	$\max (3,4)=4^{*}$
	D	$D F$	F	$\max (4,5)=5^{*}$
		$D G$	G	$\max (5,4)=5^{*}$
4	A	$A B$	B	$\max (3,5)=5^{*}$
		$A C$	C	$\max (6,4)=6$
		$A D$	D	$\max (6,5)=6$

A1

M1 A2

M1 A1

A1
giving route $A B F I K$
M1 A1
maximum stage length $=500$ miles
5. (a)

	D	E	F	Available
A	5	2		7
B		7	1	8
C			5	5
Required	5	9	6	

M1 A1
cost $=(5 \times 6)+(2 \times 4)+(7 \times 5)+(1 \times 3)+(5 \times 2)=£ 86$
M1 A1
(b) taking $R_{1}=0, \quad R_{1}+K_{1}=6 \quad \therefore K_{1}=6$
$R_{1}+K_{2}=4 \quad \therefore K_{2}=4$
$R_{2}+K_{2}=5 \quad \therefore R_{2}=1$
$R_{2}+K_{3}=3 \quad \therefore K_{3}=2$
M1 A2
$R_{3}+K_{3}=2 \quad \therefore R_{3}=0$

	$K_{1}=6$	$K_{2}=4$	$K_{3}=2$	
$R_{1}=0$	0	(0)	7	
$R_{2}=1$	8	(0)	0	
$R_{3}=0$	4	4	4	(0)

improvement indices, $I_{i j}=C_{i j}-R_{i}-K_{j}$

$$
\begin{aligned}
\therefore \quad I_{13} & =7-0-2=5 \\
I_{21} & =8-1-6=1 \\
I_{31} & =4-0-6=-2 \\
I_{32} & =4-0-4=0
\end{aligned}
$$

(c) pattern not optimal as there is a negative improvement index

B1
6. (a)

order:	1	4	3	6	5		7
	Lee	Liv	Man	New	Not	Oxf	Yor
Lee	-	71	40	96	71	165	28
Liv	71	-	31	155	92	155	93
Man	40	31	-	136	62	141	67
New	96	155	136	-	156	250	78
Not	71	92	62	156	-	94	78
Oxf	165	155	141	250	94	-	172
Yor	28	93	67	78	78	172	-

(c) use Liv - Oxf saving $31+62+94-155=32$
use Not - Yor saving $62+40+28-78=52$
use Lee - New saving $28+78-96=10$
new upper bound $=666-32-52-10=572$ miles
(d) e.g. starting at Liv

order:	1			2	5	3	6
	Lee	Liv	Man	New	Not	Oxf	Yor
	Lee	-	71	40	96	71	165
Liv	71	-	31	155	92	155	93
Man	40	31	-	136	62	141	67
New	96	155	136	-	156	250	78
Not	71	92	62	156	-	94	78
Oxf	165	155	141	250	94	-	172
Yor	28	93	67	78	78	172	-

lower bound $=$ weight of MST + two edges of least weight from Lee $=(31+67+78+62+94)+28+40=400$ miles

M1 A1
7. (a) adding 6 to all entries to make them positive gives:

		B		
		I	II	III
A	I	4	9	5
	II	10	1	8

let B play strategies I, II and III with proportions p_{1}, p_{2} and p_{3}
let value of altered game be v
let $x_{1}=\frac{p_{1}}{v}, x_{2}=\frac{p_{2}}{v}, x_{3}=\frac{p_{3}}{v}, P=\frac{1}{v}$
from A I, $\quad 4 p_{1}+9 p_{2}+5 p_{3} \leq v$
from A II, $\quad 10 p_{1}+p_{2}+8 p_{3} \leq v$
also, $\quad p_{1}+p_{2}+p_{3}=1$
dividing by v problem becomes

$$
\begin{array}{ll}
\operatorname{maximise} & P=x_{1}+x_{2}+x_{3} \\
\text { subject to } & 4 x_{1}+9 x_{2}+5 x_{3} \leq 1 \\
& 10 x_{1}+x_{2}+8 x_{3} \leq 1 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{array}
$$

(b) using slack variables r and s gives

$$
\begin{array}{r}
4 x_{1}+9 x_{2}+5 x_{3}+r=1 \\
10 x_{1}+x_{2}+8 x_{3}+s=1
\end{array}
$$

tableau 1:

Basic Var.	x_{1}	x_{2}	x_{3}	r	s	Value
r	4	9	5	1	0	1
s	10	1	8	0	1	1
P	${ }^{-} 1$	${ }^{-} 1$	${ }^{-} 1$	0	0	0

taking 10 as pivot
tableau 2:

Basic Var.	x_{1}	x_{2}	x_{3}	r	s	Value
r	0	$8 \frac{3}{5}$	$1 \frac{4}{5}$	1	$-\frac{2}{5}$	$\frac{3}{5}$
x_{1}	1	$\frac{1}{10}$	$\frac{4}{5}$	0	$\frac{1}{10}$	$\frac{1}{10}$
P	0	$-\frac{9}{10}$	$-\frac{1}{5}$	0	$\frac{1}{10}$	$\frac{1}{10}$

taking $8 \frac{3}{5}$ as pivot
tableau 3:

Basic Var.	x_{1}	x_{2}	x_{3}	r	s	Value
x_{2}	0	1	$\frac{9}{43}$	$\frac{5}{43}$	$-\frac{2}{43}$	$\frac{3}{43}$
x_{1}	1	0	$\frac{67}{86}$	$-\frac{1}{86}$	$\frac{9}{86}$	$\frac{4}{43}$
P	0	0	$-\frac{1}{86}$	$\frac{9}{86}$	$\frac{5}{86}$	$\frac{7}{43}$

taking $\longdiv { \frac { 6 7 } { 8 6 } }$ as pivot
tableau 4:

Basic Var.	x_{1}	x_{2}	x_{3}	r	s	Value
x_{2}	$-\frac{18}{67}$	1	0	$\frac{8}{67}$	$-\frac{5}{67}$	$\frac{3}{67}$
x_{3}	$1 \frac{19}{67}$	0	1	$-\frac{1}{67}$	$\frac{9}{67}$	$\frac{8}{67}$
P	$\frac{1}{67}$	0	0	$\frac{7}{67}$	$\frac{4}{67}$	$\frac{11}{67}$

tableau is optimal
$x_{1}=0, x_{2}=\frac{3}{67}, x_{3}=\frac{8}{67}, P=\frac{1}{v}=\frac{11}{67} \quad \therefore v=\frac{67}{11}$ M1
giving $p_{1}=0, p_{2}=\frac{67}{11} \times \frac{3}{67}=\frac{3}{11}, p_{3}=\frac{67}{11} \times \frac{8}{67}=\frac{8}{11}$
$\therefore B$ should not play I, should play II $\frac{3}{11}$ of time and III $\frac{8}{11}$ of time M1 A1
value of original game $=\frac{67}{11}-6=\frac{1}{11} \quad \mathrm{~A} 1$
Performance Record - D2 Paper E

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	transport., formulate lin. prog	nearest neighbour	allocation	$\begin{aligned} & \text { dynamic } \\ & \text { prog., } \\ & \text { minimax } \end{aligned}$	$\begin{aligned} & \text { transport., } \\ & \text { n-w corner, } \\ & \text { improv. } \\ & \text { indices } \end{aligned}$	$\begin{aligned} & \text { TSP, } \\ & \text { shortcut } \end{aligned}$		
Marks	6	7	7	10	10	14	21	75
Student								

