GCE Examinations

Advanced Subsidiary / Advanced Level

Decision Mathematics

Module D2

Paper D

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Craig Hunter, Edited by Shaun Armstrong
© Solomon Press

1. (a)

order:	1	5	4	3	2
	A	B	C	D	E
A	-	4	7	8	2
B	4	-	1	5	6
C	7	1	-	2	7
D	8	5	2	-	3
E	2	6	7	3	-

upper bound $=2 \times$ weight of MST

$$
=2 \times(2+3+2+1)=2 \times 8=16 \text { miles }
$$

M1 A1
(b) use $A B$ saving $2+3+2+1-4=4$
new upper bound $=16-4=12$ miles
M1
A1
2. (a) adding 5 to all entries to make them positive gives

		B		
		I	II	III
A	I	11	1	4
	II	3	10	8
	III	10	6	2

new value of game $v=V+5$
(b) let B play strategies I, II and III with proportions p_{1}, p_{2} and p_{3}
let $x_{1}=\frac{p_{1}}{v}, x_{2}=\frac{p_{2}}{v}, x_{3}=\frac{p_{3}}{v}$
(c) $p_{1}+p_{2}+p_{3}=1$ M1
dividing by v gives $x_{1}+x_{2}+x_{3}=\frac{1}{v}$
we wish to minimise $v \therefore$ maximise $\frac{1}{v}$
objective function is maximise $P=x_{1}+x_{2}+x_{3}$
A1
(d) from A I, $\quad 11 p_{1}+p_{2}+4 p_{3} \leq v$
from A II, $\quad 3 p_{1}+10 p_{2}+8 p_{3} \leq v$
from A III, $\quad 10 p_{1}+6 p_{2}+2 p_{3} \leq v$
dividing by v gives the constraints

$$
\begin{align*}
& 11 x_{1}+x_{2}+4 x_{3} \leq 1 \\
& 3 x_{1}+10 x_{2}+8 x_{3} \leq 1 \\
& 10 x_{1}+6 x_{2}+2 x_{3} \leq 1 \tag{8}\\
& x_{1} \geq 0, \quad x_{2} \geq 0, \quad x_{3} \geq 0
\end{align*}
$$

A1
3. (a)

order:	1	6	2	3	5	4	7
	A	B	C	D	E	F	G
A	-	83	57	68	103	91	120
B	83	-	78	63	41	82	52
C	57	78	-	37	59	63	74
D	68	63	37	-	60	52	62
E	103	41	59	60	-	48	51
F	91	82	63	52	48	-	77
G	120	52	74	62	51	77	-

M1 A1
tour: $A C D F E B G A$
upper bound $=57+37+52+48+41+52+120=407$ miles
e.g. starting at B

order:		1	6	5	2	3	4
	A	B	C	D	E	F	G
A	-	83	57	68	103	91	120
B	83	-	78	63	41	82	52
C	57	78	-	37	59	63	74
D	68	63	37	-	60	52	62
E	103	41	59	60	-	48	51
F	91	82	63	52	48	-	77
G	120	52	74	62	51	77	-

lower bound $=$ weight of MST + two edges of least weight from A

$$
=(41+48+51+52+37)+57+68=354 \text { miles }
$$

4.

Stage	State	Action	Destination	Value
1	I	IL	L	5*
	J	$J L$	L	6*
	K	KL	L	10*
2	F	$\begin{aligned} & \hline F I \\ & F J \\ & F K \end{aligned}$	$\begin{aligned} & \hline I \\ & J \\ & K \end{aligned}$	$\begin{aligned} & \min (5,5)=5^{*} \\ & \min (2,6)=2 \\ & \min (2,10)=2 \end{aligned}$
	G	$\begin{gathered} G I \\ G J \\ G K \end{gathered}$	$\begin{aligned} & \hline I \\ & J \\ & K \end{aligned}$	$\begin{aligned} & \min (8,5)=5 \\ & \min (9,6)=6^{*} \\ & \min (3,10)=3 \end{aligned}$
	H	$\begin{aligned} & H I \\ & H J \\ & H K \end{aligned}$	$\begin{aligned} & \hline I \\ & J \\ & K \end{aligned}$	$\begin{aligned} & \min (10,5)=5 \\ & \min (2,6)=2 \\ & \min (9,10)=9^{*} \end{aligned}$
3	B	$\begin{aligned} & B F \\ & B G \\ & B H \end{aligned}$	$\begin{aligned} & \hline F \\ & G \\ & H \end{aligned}$	$\begin{aligned} & \min (8,5)=5 \\ & \min (11,6)=6^{*} \\ & \min (4,9)=4 \end{aligned}$
	C	$\begin{aligned} & C F \\ & C H \end{aligned}$	$\begin{aligned} & F \\ & H \end{aligned}$	$\begin{aligned} & \min (5,5)=5 \\ & \min (10.5,9)=9^{*} \end{aligned}$
	D	$\begin{aligned} & \hline D F \\ & D H \end{aligned}$	$\begin{aligned} & F \\ & H \end{aligned}$	$\begin{aligned} & \min (9,5)=5 \\ & \min (6,9)=6^{*} \end{aligned}$
	E	$\begin{aligned} & E F \\ & E G \\ & E H \end{aligned}$	$\begin{aligned} & \hline F \\ & G \\ & H \end{aligned}$	$\begin{aligned} & \min (12,5)=5 \\ & \min (7,6)=6 \\ & \min (15,9)=9^{*} \end{aligned}$
4	A	$\begin{aligned} & \hline A B \\ & A C \\ & A D \\ & A E \end{aligned}$	$\begin{aligned} & \hline B \\ & C \\ & D \\ & E \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline \min (1,6)=1 \\ & \min (4.5,9)=4.5 \\ & \min (13,6)=6 \\ & \min (10,9)=9^{*} \end{aligned}$

giving route $A E H K L$
shortest stage is 9 miles
M1 A1
A1
(10)
5. need to add dummy column giving

> | 19 | 69 | 168 | 0 |
| :---: | :---: | :---: | :---: |
| 22 | 64 | 157 | 0 |
| 20 | 72 | 166 | 0 |
| 23 | 66 | 171 | 0 |
| -10 | 64 | 157 | 0 |

col min. 19641570
reducing rows will make no difference
reducing columns gives:

0	5	11	0
3	0	0	0
1	8	9	0
4	2	14	0

(N.B. a different choice of lines will

M1 A1
lead to the same final assignment)
3 lines required to cover all zeros, apply algorithm
B1

$$
\begin{array}{ccc:c}
0 & 5 & 11 & 1 \\
3 & 0 & 0 & 1 \\
0 & 7 & 8 & 0 \\
3 & 1 & 13 & 0
\end{array}
$$

$$
\begin{array}{llllll}
0 & 7 & 8 & 0 & \text { M1 A1 }
\end{array}
$$

3 lines required to cover all zeros, apply algorithm

$$
\begin{array}{cccc}
b^{*} & 4 & 10 & 1 \\
-4 & 0 & 0^{*} & 2 \\
0 & 6 & 7 & 0^{*} \\
3 & 0^{*} & 12 & 0
\end{array}
$$

A1

B1
stage 1 is run by Alex
stage 2 is run by Suraj
stage 3 is run by Darren
M1 A1
Leroy does not take part
6. (a)

		Y		row minimum
		Y_{1}	Y_{2}	${ }^{-} 2$
X	X_{1}	-2	4	${ }^{-} 1$
	X_{2}	6	${ }^{-} 1$	
column maximum		6	4	

M1 A1
$\max ($ row $\min)={ }^{-} 1 \quad \min (\operatorname{col} \max)=4$
$\max ($ row $\min) \neq \min ($ col max) \therefore no saddle point
(b) (i) let X play strategies X_{1} and X_{2} with proportions p and $(1-p)$
expected payoff to X against each of Y 's strategies:
$Y_{1} \quad-2 p+6(1-p)=6-8 p$
$Y_{2} \quad 4 p-(1-p)=5 p-1$
for optimal strategy $6-8 p=5 p-1$

$$
\therefore 13 p=7, p=\frac{7}{13}
$$

$\therefore X$ should play $X_{1} \frac{7}{13}$ of time and $X_{2} \frac{6}{13}$ of time M1 A1
(ii) let Y play strategies Y_{1} and Y_{2} with proportions q and $(1-q)$
expected loss to Y against each of X 's strategies:
$X_{1} \quad-2 q+4(1-q)=4-6 q$
$X_{2} \quad 6 q-(1-q)=7 q-1$ M1 A1
for optimal strategy $4-6 q=7 q-1$

$$
\therefore 13 q=5, q=\frac{5}{13}
$$

$\therefore Y$ should play $Y_{1} \frac{5}{13}$ of time and $Y_{2} \frac{8}{13}$ of time
(c) value of game $=6-\left(8 \times \frac{7}{13}\right)=1 \frac{9}{13}$

M1 A1
7. (a)

	D	E	F	Available
A	20			20
B	10	5		15
C			25	25
Required	30	5	25	

no. of rows + no. of cols $-1=3+3-1=5$
in this solution only 4 cells are occupied, less than $5 \therefore$ degenerate
(b) placing 0 in $(3,2)$ as it has lowest cost of unoccupied cells taking $R_{1}=0$,

$$
\begin{array}{llll}
R_{1}+K_{1}=13 & \therefore K_{1}=13 & R_{2}+K_{1}=10 & \therefore R_{2}=-3 \\
R_{2}+K_{2}=9 & \therefore K_{2}=12 & R_{3}+K_{2}=6 & \therefore R_{3}=-6 \\
R_{3}+K_{3}=8 & \therefore K_{3}=14 & &
\end{array}
$$

	$K_{1}=13$	$K_{2}=12$		$K_{3}=14$	
$R_{1}=0$	(0)	11	14		
$R_{2}=-3$	0	(0)	12		
$R_{3}=-6$	15	0	0		

improvement indices, $I_{i j}=C_{i j}-R_{i}-K_{j}$

$$
\begin{aligned}
\therefore \quad I_{12} & =11-0-12=-1 \\
I_{13} & =14-0-14=0 \\
I_{23} & =12-(-3)-14=1 \\
I_{31} & =15-(-6)-13=8
\end{aligned}
$$

pattern not optimal as there is a negative improvement index
applying algorithm

	D	E	F
A	$20-\theta$	θ	
B	$10+\theta$	$5-\theta$	
C			25

let $\theta=5$, giving

	D	E	F
A	15	5	
B	15		
C			25

this solution is also degenerate
place 0 in $(3,2)$ again
taking $R_{1}=0, \quad R_{1}+K_{1}=13 \quad \therefore K_{1}=13 \quad R_{1}+K_{2}=11 \quad \therefore K_{2}=1$ $R_{2}+K_{1}=10 \quad \therefore R_{2}=-3 \quad R_{3}+K_{2}=6 \quad \therefore R_{3}=-5 \quad$ M1 A1

$$
R_{3}+K_{3}=8 \quad \therefore K_{3}=13
$$

	$K_{1}=13$	$K_{2}=11$	$K_{3}=13$		
$R_{1}=0$	0	0	14		
$R_{2}=-3$	0	0	12		
$R_{3}=-5$	0	15	0	0	

$$
\begin{aligned}
\therefore \quad I_{13} & =14-0-13=1 \\
I_{22} & =9-(-3)-11=1 \\
I_{23} & =12-(-3)-13=2 \\
I_{31} & =15-(-5)-13=7
\end{aligned}
$$

all improvement indices are non-negative \therefore pattern is optimal
B1
15 units from A to $D, 5$ units from A to E,
15 units from B to $D, 25$ units from C to F
total cost $=(15 \times 13)+(5 \times 11)+(15 \times 10)+(25 \times 8)=£ 600 \quad$ A1
Performance Record - D2 Paper D

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	$\begin{aligned} & \hline \text { TSP, } \\ & \text { shortcuts } \end{aligned}$	$\begin{aligned} & \text { game, } \\ & \text { formulate } \\ & \text { lin. prog. } \end{aligned}$	TSP, nearest neighbour	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { dynamic } \\ \text { prog. } \\ \text { maximin } \end{array} \\ \hline \end{array}$	allocation, dummy	game	\qquad	
Marks	6	8	9	10	11	13	18	75
Student								

