GCE Examinations Advanced Subsidiary / Advanced Level

Decision Mathematics Module D2

Paper A MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Craig Hunter, Edited by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

D2 Paper A – Marking Guide

1.

2.

				В		row							
			Ι	II	III	minimum							
		Ι	- 3	4	0	- 3							
	A	II	2	2	1	1							
		III	3	- 2	- 1	- 2		M1 A1					
co	lumn m	aximum	3	4	1								
	,	. 、 .											
nax	(row m	in) = min	(col max)=1 :.	saddle p	oint		M1					
•. A	should	play II all	the time	B shou	ld play II	II all the time	2	M1 A1	(5)				
		r of o		,	·· F ·· J		-		(-)				
a)		number of											
		number of											
		number of											
		number of											
		number of											
		number of						DI					
x_{23} – number of crates from <i>B</i> to <i>F</i> x_{31} – number of crates from <i>C</i> to <i>D</i>													
				x_{31} – number of crates from C to E x_{32} – number of crates from C to E									
	$x_{32} -$	number of	f crates f					B1					
	$x_{32} -$		f crates f					BI					
Ь)	$x_{32} - x_{33} - x_{33} - x_{33}$	number of number of mise	f crates f f crates f	rom C to) F			BI					
<i>b)</i>	$x_{32} - x_{33} - x_{33} - x_{33}$	number of number of mise	f crates f f crates f	rom C to) F	$x_2 + 26x_{23} + 2^{-3}$	$7x_{31} + 16x_{32} + 19x_{33}$	B1 B2					
b) (c)	$x_{32} - x_{33} - x_{33} - z = 1$	number of number of mise	f crates f f crates f $r_{12} + 13x$	from <i>C</i> to $x_{13} + 18x_2$) F		$7x_{31} + 16x_{32} + 19x_{33}$						
,	$x_{32} - x_{33} - x$	number of number of mise $9x_{11} + 22x$	f crates f f crates f $r_{12} + 13x$ = 42 nu	from C to $x_{13} + 18x_2$ umber of	$F_{1} + 14x_{22}$	A	$7x_{31} + 16x_{32} + 19x_{33}$						
,	$x_{32} - x_{33} - x$	number of number of mise $9x_{11} + 22x$ $x_{12} + x_{13} =$	f crates f f crates f $x_{12} + 13x$ = 42 nu = 26 nu	from C to $x_{13} + 18x_2$ umber of umber of	$rac{1}{r}F$ $rac{1}{r}+14x_{22}$ crates at crates at	A B	$7x_{31} + 16x_{32} + 19x_{33}$						
,	$x_{32} - x_{33} - x_{33} - x_{33} - x_{33} - x_{31} - x_{31} + x_{21} + x_{31} + x_{31} + x_{31} - x$	number of number of $9x_{11} + 22x$ $x_{12} + x_{13} =$ $x_{22} + x_{23} =$	f crates f f crates f $x_{12} + 13x$ = 42 nu = 26 nu = 32 nu	from C to $_{13} + 18x_2$ umber of umber of umber of	F $_1 + 14x_{22}$ crates at crates at crates at	A B							
,	$x_{32} - x_{33} - x_{33} - x_{33} - x_{33} - x_{33} - x_{31} - x_{11} + x_{21} + x_{31} + x_{31} + x_{11} + x_{11} + x_{11} - x$	number of number of $9x_{11} + 22x$ $x_{12} + x_{13} =$ $x_{22} + x_{23} =$ $x_{32} + x_{33} =$	f crates f f crates f f crates f = 42 nu = 26 nu = 32 nu = 29 nu	from C to $_{13} + 18x_2$ umber of umber of umber of umber of	F $1 + 14x_{22}$ crates at crates at crates at crates references at	: A : B : C							
,	$x_{32} - x_{33} - x$	number of number of $y_{11} + 22x$ $x_{12} + x_{13} =$ $x_{22} + x_{23} =$ $x_{32} + x_{33} =$ $x_{21} + x_{31} =$	f crates f f crates f $x_{12} + 13x$ = 42 nu = 32 nu = 32 nu = 29 nu = 47 nu	from C to $_{13} + 18x_2$ umber of umber of umber of umber of umber of	F $1 + 14x_{22}$ crates at crates at crates at crates at crates re- crates re- crates re- crates re-	A B C equired by D		B2					
,	$x_{32} - x_{33} - x_{33} - x_{33} - x_{33} - x_{33} - x_{33} - x_{11} + x_{21} + x_{31} + x_{11} + x_{12} + x_{13} + x$	number of number of $y_{11} + 22x$ $x_{12} + x_{13} =$ $x_{22} + x_{23} =$ $x_{32} + x_{33} =$ $x_{21} + x_{31} =$ $x_{22} + x_{32} =$	f crates f f crates f $r_{12} + 13x$ = 42 nu = 26 nu = 32 nu = 32 nu = 47 nu = 24 nu	from C to $_{13} + 18x_2$ umber of umber of umber of umber of umber of	F $1 + 14x_{22}$ crates at crates at crates at crates at crates re- crates re- crates re- crates re-	A B C equired by D equired by E		B2					

 $cost = \pounds 2100$

Stage	State	Destination	Cost	Total cost	
1	Marquee	Deluxe Cuisine	20 24	20* 24	
	Castle	Deluxe Castle Cuisine	21 15 22	21 15* 22	
	Hotel	Deluxe Cuisine Hotel	18 23 19	18* 23 19	M1 A1
2	Church	Marquee Castle Hotel	2 5.5 3	2 + 20 = 22 5.5 + 15 = 20.5* 3 + 18 = 21	
	Castle	Marquee Castle	3 5	3 + 20 = 23 5 + 15 = 20*	
	Registry Office	Marquee Castle Hotel	3.5 6 2	3.5 + 20 = 23.5 6 + 15 = 21 2 + 18 = 20*	M1 A2
3	Home	Castle Church Registry	3 5 1	3 + 20.5 = 23.5 5 + 20 = 25 1 + 20 = 21*	A1
cei rec	eption – Hot	gistry Office el			
cat	ering – Delu	xe			M1 A1

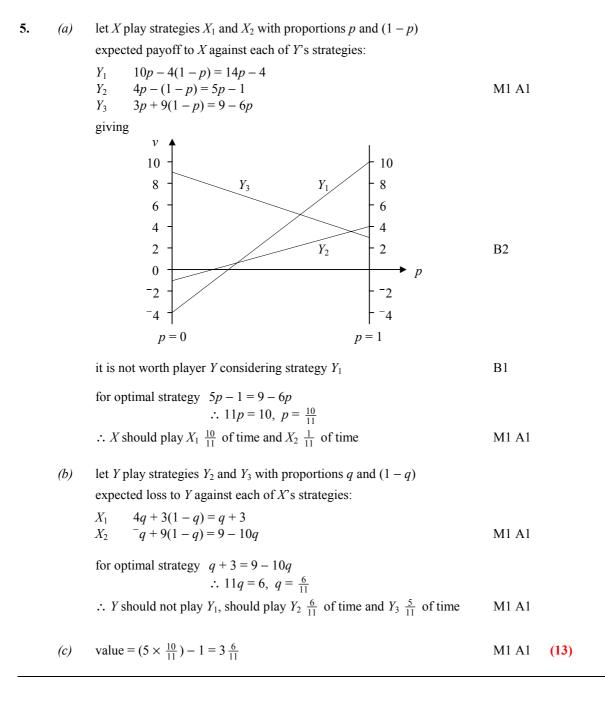
A1

(9)

4. (i)

order:	1	4	8	2	3	6	5	7
	A	В	С	D	Ε	F	G	Н
A	-	85	59	31	47	52	74	41
В	85	I	104	73	51	68	43	55
С	59	104	_	54	62	88	61	45
D	31	73	54	-	40	59	65	78
Ε	47	51	62	40	-	56	71	68
F	52	68	88	59	56	-	53	49
G	74	43	61	65	71	53	_	63
Н	41	55	45	78	68	49	63	_

M1 A2


A1

tour: ADEBGFHCA

upper bound = $31 + 40 + 51 + 43 + 53 + 49 + 45 + 59 = 371$ km	
--	--

(ii) e.g. beginning at A

order:	1	4	7	2	3	6	5		_		
	Α	В	С	D	Ε	F	G	Н			
A	-	85	59	31	47	52	74	41			
В	85	_	104	73	51	68	43	55			
С	59	104	I	54	62	88	61	45			
D	31	73	54	I	40	59	65	78			
Ε	47	51	62	40	Ι	56	71	68			
F	52	68	88	59	56	-	53	49			
G	74	43	61	65	71	53	-	63		M1 A2	
Н	41	55	45	78	68	49	63	-			
weight o lower bo								t from i	Ч	A1	
		+ 45 =			euges	or reast	weight		1	M1 A1	
∴ 357 ≤	$d \leq 37$	1								A1	(11)

	1.11
row min.	
18 26 11 4 4	
10 25 12 14 10	
23 28 16 5 5	
reducing rows gives:	
14 22 7 0	
0 15 2 4	
18 23 11 0	M1 A1
12 30 4 0	
col min. 0 15 2 0	
reducing columns gives:	
14 7 5 0	
-0 - 0 - 4	
18 8 9 Ø	M1 A1
12 15 2 0	
2 lines required to cover all zeros, apply algorithm	B1
12 5 3 0	
$\frac{12}{0}$ $\frac{3}{0}$ $\frac{1}{0}$ $\frac{1}{0}$	
16 6 7 0 (N.B. a different choice of lines will	M1 A1
$10 \ 13 \ 0 \ 0$ lead to the same final assignment)	
3 lines required to cover all zeros, apply algorithm	
$7 0^* 3 0$	
$\frac{0^{*}}{0} \frac{5}{5} \frac{11}{11}$	
$\frac{11}{5-8}$ $\frac{1}{0}^{*}$	M1 A1
	D1
4 lines required to cover all zeros so allocation is possible	B1
R_1 goes to A_2	
R_2 goes to A_1	
R_3 goes to A_4	
R_4 goes to A_3	M1 A1 (13)

7. (a)

(b)

	WA	WB	W _C	Available	
W_1	5	5		10	
W_2		7	1	8	
W_3			7	7	M1 A
Required	5	12	8		

taking
$$R_1 = 0$$
, $R_1 + K_1 = 7$ \therefore $K_1 = 7$ $R_1 + K_2 = 8$ \therefore $K_2 = 8$
 $R_2 + K_2 = 6$ \therefore $R_2 = 2$ $R_2 + K_3 = 5$ \therefore $K_3 = 7$ M1 A2
 $R_3 + K_3 = 7$ \therefore $R_3 = 0$

	$K_1 = 7$	$K_2 = 8$	$K_3 = 7$
$R_1 = 0$	\bigcirc	\bigcirc	(10
$R_2 = -2$	9	\bigcirc	\bigcirc
$R_3 = 0$	(11	(5	\bigcirc

improvement indices, $I_{ij} = C_{ij} - R_i - K_j$

:.
$$I_{13} = 10 - 0 - 7 = 3$$

 $I_{21} = 9 - (-2) - 7 = 4$
 $I_{31} = 11 - 0 - 7 = 4$
 $I_{32} = 5 - 0 - 8 = -3$

(c) applying algorithm

let $\theta = 7$, giving

		$W_{\rm A}$	$W_{\rm B}$	W _C		$W_{\rm A}$	$W_{\rm B}$	W _C	
ſ	W_1	5	5		W_1	5	5		
	W_2		$7 - \theta$	$1 + \theta$	W_2			8	
	W_3		θ	$7 - \theta$	W_3		7		M1 A2

no. of rows + no. of cols - 1 = 3 + 3 - 1 = 5in this solution only 4 cells are occupied, less than 5 \therefore degenerate B1

(d) placing 0 in (2, 2) so it is occupied taking $R_1 = 0$, $R_1 + K_1 = 7$ \therefore $K_1 = 7$ $R_2 + K_2 = 6$ \therefore $R_2 = -2$ $R_3 + K_2 = 5$ \therefore $R_3 = -3$ $R_1 + K_2 = 8$ \therefore $K_2 = 8$ $R_2 + K_3 = 5$ \therefore $K_3 = 7$

	$K_1 = 7$	$K_2 = 8$	$K_3 = 7$
$R_1 = 0$	\bigcirc	\bigcirc	(10
$R_2 = -2$	9	\bigcirc	0
$R_3 = -3$	(11	\bigcirc	7

$$\therefore I_{13} = 10 - 0 - 7 = 3$$

$$I_{21} = 9 - (-2) - 7 = 4$$

$$I_{31} = 11 - (-3) - 7 = 7$$

$$I_{33} = 7 - (-3) - 7 = 3$$
All improvement indices are non negative. \therefore pattern is optimal. B1

all improvement indices are non-negative \therefore pattern is optimalB15 lorries from W_1 to W_A , 5 lorries from W_1 to W_B ,8 lorries from W_2 to W_C , 7 lorries from W_3 to W_B A1

(e) total cost = $10 \times [(5 \times 7) + (5 \times 8) + (8 \times 5) + (7 \times 5)] = \pounds 1500$

Total (75)

M1 A1

M1 A1

M1 A1

(18)

Performance Record – D2 Paper A

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	game, stable soln.	transport., formulate lin. prog.	dynamic prog., min.	TSP, nearest neighbour	game, graphical method	allocation, max.	transport., n-w corner, stepping- stone, degeneracy	
Marks	5	6	9	11	13	13	18	75
Student								