GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C4

Paper J

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. Show that

$$
\begin{equation*}
\int_{2}^{4} x\left(x^{2}-4\right)^{\frac{1}{2}} \mathrm{~d} x=8 \sqrt{3} . \tag{5}
\end{equation*}
$$

2. (i) Simplify

$$
\begin{equation*}
\frac{2 x^{2}+3 x-9}{2 x^{2}-7 x+6} \tag{2}
\end{equation*}
$$

(ii) Find the quotient and remainder when $\left(2 x^{4}-1\right)$ is divided by $\left(x^{2}-2\right)$.
3. A curve has the equation

$$
2 \sin 2 x-\tan y=0 .
$$

(i) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in its simplest form in terms of x and y.
(ii) Show that the tangent to the curve at the point $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ has the equation

$$
\begin{equation*}
y=\frac{1}{2} x+\frac{\pi}{4} . \tag{3}
\end{equation*}
$$

4. The gradient at any point (x, y) on a curve is proportional to \sqrt{y}.

Given that the curve passes through the point with coordinates $(0,4)$,
(i) show that the equation of the curve can be written in the form

$$
2 \sqrt{y}=k x+4
$$

where k is a positive constant.
Given also that the curve passes through the point with coordinates $(2,9)$,
(ii) find the equation of the curve in the form $y=\mathrm{f}(x)$.
5.

The diagram shows the curve with parametric equations

$$
x=2-t^{2}, \quad y=t(t+1), \quad t \geq 0 .
$$

(i) Find the coordinates of the points where the curve meets the coordinate axes.
(ii) Find an equation for the tangent to the curve at the point where $t=2$, giving your answer in the form $a x+b y+c=0$.
6.

$$
\mathrm{f}(x)=\frac{1+3 x}{(1-x)(1-3 x)}, \quad|x|<\frac{1}{3} .
$$

(i) Find the values of the constants A and B such that

$$
\begin{equation*}
\mathrm{f}(x)=\frac{A}{1-x}+\frac{B}{1-3 x} . \tag{3}
\end{equation*}
$$

(ii) Evaluate

$$
\int_{0}^{\frac{1}{4}} \mathrm{f}(x) \mathrm{d} x,
$$

giving your answer as a single logarithm.
(iii) Find the series expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.
7. Relative to a fixed origin, two lines have the equations

$$
\mathbf{r}=\left(\begin{array}{l}
4 \\
1 \\
1
\end{array}\right)+s\left(\begin{array}{l}
1 \\
4 \\
5
\end{array}\right)
$$

$$
\text { and } \quad \mathbf{r}=\left(\begin{array}{c}
-3 \\
1 \\
-6
\end{array}\right)+t\left(\begin{array}{l}
3 \\
a \\
b
\end{array}\right),
$$

where a and b are constants and s and t are scalar parameters.
Given that the two lines are perpendicular,
(i) find a linear relationship between a and b.

Given also that the two lines intersect,
(ii) find the values of a and b,
(iii) find the coordinates of the point where they intersect.
8. (i) Find

$$
\begin{equation*}
\int x^{2} \mathrm{e}^{\frac{1}{2} x} \mathrm{~d} x \tag{6}
\end{equation*}
$$

(ii) Using the substitution $u=\sin t$, evaluate

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \sin ^{2} 2 t \cos t \mathrm{~d} t \tag{7}
\end{equation*}
$$

