GCE Examinations Advanced / Advanced Subsidiary

Core Mathematics C4

Paper I Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer **all** the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- You are reminded of the need for clear presentation in your answers.

Written by Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

1. Differentiate each of the following with respect to *x* and simplify your answers.

(i)
$$\ln(\cos x)$$
 [2]

(ii)
$$x^2 \sin 3x$$
 [2]

2. A curve has the equation

$$x^{2} + 3xy - 2y^{2} + 17 = 0.$$
(*i*) Find an expression for $\frac{dy}{dx}$ in terms of x and y. [4]

(*ii*) Find an equation for the normal to the curve at the point (3, -2). [3]

3.
$$f(x) = 3 - \frac{x-1}{x-3} + \frac{x+11}{2x^2 - 5x-3}, |x| < \frac{1}{2}.$$

(i) Show that

$$f(x) = \frac{4x - 1}{2x + 1}.$$
 [4]

(*ii*) Find the series expansion of f(x) in ascending powers of x up to and including the term in x^3 , simplifying each coefficient. [5]

4. A curve has parametric equations

$$x = t^3 + 1, y = \frac{2}{t}, t \neq 0.$$

- (i) Find an equation for the normal to the curve at the point where t = 1, giving your answer in the form y = mx + c. [6]
- (*ii*) Find a cartesian equation for the curve in the form y = f(x). [3]

$$f(x) = \frac{15 - 17x}{(2 + x)(1 - 3x)^2}, \quad x \neq -2, \quad x \neq \frac{1}{3}.$$

(i) Find the values of the constants A, B and C such that

$$f(x) = \frac{A}{2+x} + \frac{B}{1-3x} + \frac{C}{(1-3x)^2}.$$
 [5]

(ii) Find the value of

5.

$$\int_{-1}^0 f(x) dx,$$

giving your answer in the form $p + \ln q$, where p and q are integers. [5]

6. Relative to a fixed origin, *O*, the line *l* has the equation

$$\mathbf{r} = \begin{pmatrix} 1\\p\\-5 \end{pmatrix} + \lambda \begin{pmatrix} 3\\-1\\q \end{pmatrix},$$

where *p* and *q* are constants and λ is a scalar parameter.

Given that the point A with coordinates (-5, 9, -9) lies on l,

(i) find the values of p and q, [3]

(*ii*) show that the point *B* with coordinates (25, -1, 11) also lies on *l*. [2]

The point C lies on l and is such that OC is perpendicular to l.

- (*iii*) Find the coordinates of C. [3]
- (iv) Find the ratio AC:CB [2]
- 7. (i) Use the substitution $x = 2 \sin u$ to evaluate

$$\int_{0}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} \, \mathrm{d}x.$$
 [6]

(ii) Evaluate

$$\int_0^{\frac{\pi}{2}} x \cos x \, \mathrm{d}x.$$
 [5]

Turn over

8.	The rate of increase in the number of bacteria in a culture, N , at time t hours is proportional to N .		
	(i)	Write down a differential equation connecting N and t .	[1]
	Give	on that initially there are N_0 bacteria present in a culture,	
	(ii)	Show that $N = N_0 e^{kt}$, where k is a positive constant.	[6]
	Give	en also that the number of bacteria present doubles every six hours,	
	(iii)	find the value of k ,	[3]
	(iv)	find how long it takes for the number of bacteria to increase by a factor of ten, giving your answer to the nearest minute.	[2]

© Solomon Press