GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C4

Paper D

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. Evaluate

$$
\begin{equation*}
\int_{0}^{\pi} \sin x(1+\cos x) \mathrm{d} x . \tag{4}
\end{equation*}
$$

2. (i) Simplify

$$
\begin{equation*}
\frac{x^{2}+7 x+12}{2 x^{2}+9 x+4} \tag{2}
\end{equation*}
$$

(ii) Express

$$
\frac{x+4}{2 x^{2}+3 x+1}-\frac{2}{2 x+1}
$$

as a single fraction in its simplest form.
3. Find the exact value of

$$
\begin{equation*}
\int_{1}^{3} x^{2} \ln x \mathrm{~d} x . \tag{5}
\end{equation*}
$$

4.

The diagram shows the curve with parametric equations

$$
\begin{equation*}
x=t+\sin t, \quad y=\sin t, \quad 0 \leq t \leq \pi . \tag{3}
\end{equation*}
$$

(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(ii) Find, in exact form, the coordinates of the point where the tangent to the curve is parallel to the x-axis.
5. Given that $y=-2$ when $x=1$, solve the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{2} \sqrt{x} \tag{7}
\end{equation*}
$$

giving your answer in the form $y=\mathrm{f}(x)$.
6. (i) Find $\int \tan ^{2} 3 x \mathrm{~d} x$.
(ii) Using the substitution $u=x^{2}+4$, evaluate

$$
\begin{equation*}
\int_{0}^{2} \frac{5 x}{\left(x^{2}+4\right)^{2}} \mathrm{~d} x . \tag{6}
\end{equation*}
$$

7. A curve has the equation

$$
3 x^{2}-2 x+x y+y^{2}-11=0
$$

The point P on the curve has coordinates $(-1,3)$.
(i) Show that the normal to the curve at P has the equation $y=2-x$.
(ii) Find the coordinates of the point where the normal to the curve at P meets the curve again.
8. The line l_{1} passes through the points A and B with position vectors $(-3 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k})$ and $(7 \mathbf{i}-\mathbf{j}+12 \mathbf{k})$ respectively, relative to a fixed origin.
(i) Find a vector equation for l_{1}.

The line l_{2} has the equation

$$
\mathbf{r}=(5 \mathbf{j}-7 \mathbf{k})+\mu(\mathbf{i}-2 \mathbf{j}+7 \mathbf{k})
$$

The point C lies on l_{2} and is such that $A C$ is perpendicular to $B C$.
(ii) Show that one possible position vector for C is $(\mathbf{i}+3 \mathbf{j})$ and find the other.

Assuming that C has position vector $(\mathbf{i}+3 \mathbf{j})$,
(iii) find the area of triangle $A B C$, giving your answer in the form $k \sqrt{5}$.
9.

$$
\mathrm{f}(x)=\frac{8-x}{(1+x)(2-x)}, \quad|x|<1
$$

(i) Express $\mathrm{f}(x)$ in partial fractions.
(ii) Show that

$$
\int_{0}^{\frac{1}{2}} \mathrm{f}(x) \mathrm{d} x=\ln k
$$

where k is an integer to be found.
(iii) Find the series expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.

