GCE Examinations

Advanced / Advanced Subsidiary

Core Mathematics C4

Paper B

Time: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures, unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

1. Find $\int x \mathrm{e}^{3 x} \mathrm{~d} x$.
2. Find the quotient and remainder when $\left(x^{4}+x^{3}-5 x^{2}-9\right)$ is divided by $\left(x^{2}+x-6\right)$.
3. Differentiate each of the following with respect to x and simplify your answers.

> (i) $\cot x^{2}$
> (ii) $\frac{\sin x}{3+2 \cos x}$
4. (i) Expand $(1-3 x)^{-2},|x|<\frac{1}{3}$, in ascending powers of x up to and including the term in x^{3}, simplifying each coefficient.
(ii) Hence, or otherwise, show that for small x,

$$
\begin{equation*}
\left(\frac{2-x}{1-3 x}\right)^{2} \approx 4+20 x+85 x^{2}+330 x^{3} . \tag{3}
\end{equation*}
$$

5.

The diagram shows the curve with parametric equations

$$
x=a \sqrt{t}, \quad y=a t(1-t), \quad t \geq 0
$$

where a is a positive constant.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.

The curve meets the x-axis at the origin, O, and at the point A. The tangent to the curve at A meets the y-axis at the point B as shown.
(ii) Show that the area of triangle $O A B$ is a^{2}.
6. Relative to a fixed origin, two lines have the equations

$$
\mathbf{r}=(7 \mathbf{j}-4 \mathbf{k})+s(4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}),
$$

and

$$
\mathbf{r}=(-7 \mathbf{i}+\mathbf{j}+8 \mathbf{k})+t(-3 \mathbf{i}+2 \mathbf{k})
$$

where s and t are scalar parameters.
(i) Show that the two lines intersect and find the position vector of the point where they meet.
(ii) Find, in degrees to 1 decimal place, the acute angle between the lines.
7. At time $t=0$, a tank of height 2 metres is completely filled with water. Water then leaks from a hole in the side of the tank such that the depth of water in the tank, y metres, after t hours satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=-k \mathrm{e}^{-0.2 t}
$$

where k is a positive constant,
(i) Find an expression for y in terms of k and t.

Given that two hours after being filled the depth of water in the tank is 1.6 metres,
(ii) find the value of k to 4 significant figures.

Given also that the hole in the tank is $h \mathrm{~cm}$ above the base of the tank,
(iii) show that $h=79$ to 2 significant figures.
8. A curve has the equation

$$
x^{2}-4 x y+2 y^{2}=1 .
$$

(i) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in its simplest form in terms of x and y.
(ii) Show that the tangent to the curve at the point $P(1,2)$ has the equation

$$
\begin{equation*}
3 x-2 y+1=0 \tag{3}
\end{equation*}
$$

The tangent to the curve at the point Q is parallel to the tangent at P.
(iii) Find the coordinates of Q.
9. (i) Show that the substitution $u=\sin x$ transforms the integral

$$
\int \frac{6}{\cos x(2-\sin x)} d x
$$

into the integral

$$
\begin{equation*}
\int \frac{6}{\left(1-u^{2}\right)(2-u)} \mathrm{d} u . \tag{4}
\end{equation*}
$$

(ii) Express $\frac{6}{\left(1-u^{2}\right)(2-u)}$ in partial fractions.
(iii) Hence, evaluate

$$
\int_{0}^{\frac{\pi}{6}} \frac{6}{\cos x(2-\sin x)} \mathrm{d} x,
$$

giving your answer in the form $a \ln 2+b \ln 3$, where a and b are integers.

